Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Load model and tokenizer | |
MODEL_NAME = "Qwen/Qwen2.5-Coder-1.5B" | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, trust_remote_code=True) | |
# Define the refactor function | |
def refactor_code(message, code): | |
input_text = f"{message}\n\nCode:\n{code}" | |
inputs = tokenizer(input_text, return_tensors="pt", max_length=1024, truncation=True) | |
outputs = model.generate(inputs["input_ids"], max_new_tokens=200) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Gradio Interface | |
interface = gr.Interface( | |
fn=refactor_code, | |
inputs=[ | |
gr.Textbox(label="Message (Instruction)"), | |
gr.Textbox(label="Code", lines=15), | |
], | |
outputs="text", | |
title="Code Refactor with Qwen Model", | |
description="Provide an instruction and code to refactor. The model will return the updated code." | |
) | |
# Launch the app | |
interface.launch(share=True) | |