import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM # Load model and tokenizer MODEL_NAME = "Qwen/Qwen2.5-Coder-1.5B" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, trust_remote_code=True) # Define the refactor function def refactor_code(message, code): input_text = f"{message}\n\nCode:\n{code}" inputs = tokenizer(input_text, return_tensors="pt", max_length=1024, truncation=True) outputs = model.generate(inputs["input_ids"], max_new_tokens=200) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Gradio Interface interface = gr.Interface( fn=refactor_code, inputs=[ gr.Textbox(label="Message (Instruction)"), gr.Textbox(label="Code", lines=15), ], outputs="text", title="Code Refactor with Qwen Model", description="Provide an instruction and code to refactor. The model will return the updated code." ) # Launch the app interface.launch(share=True)