Tonics-Yi-200K / app.py
Tonic's picture
Update app.py
8d621ae
raw
history blame
8.7 kB
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
# from optimum.bettertransformer import BetterTransformer
from tokenization_yi import YiTokenizer
import torch
import os
import bitsandbytes
import gradio as gr
import sentencepiece
DESCRIPTION = """
# Welcome to Tonic'sYI-6B-200K
You can use this Space to test out the current model [01-ai/Yi-6B-200K](https://huggingface.co/01-ai/Yi-6B-200K)
You can also use YI-200 by cloning this space. Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic1Tonics-Yi-6B-200K/?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
Join us : TeamTonic is always making cool demos! Join our active builder's community on Discord: [Discord](https://discord.gg/nXx5wbX9) On Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On Github: [Polytonic](https://github.com/tonic-ai) & contribute to [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)
"""
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:126'
MAX_MAX_NEW_TOKENS = 160000
DEFAULT_MAX_NEW_TOKENS = 20000
MAX_INPUT_TOKEN_LENGTH = 160000
device = "cuda" if torch.cuda.is_available() else "cpu"
model_name = "01-ai/Yi-6B-200K"
# tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
tokenizer = YiTokenizer(vocab_file="./tokenizer.model")
model = transformers.AutoModelForCausalLM.from_pretrained(model_name,
device_map="auto",
torch_dtype=torch.bfloat16,
load_in_4bit=True,
trust_remote_code=True
)
# Load the model and tokenizer using transformers
# model = AutoModelForCausalLM.from_pretrained("01-ai/Yi-6B-200K", trust_remote_code=True)
# model = BetterTransformer.transform(model)
def run(message, chat_history, max_new_tokens=20000, temperature=1.5, top_p=0.9, top_k=900):
prompt = get_prompt(message, chat_history)
# Encode the prompt to tensor
input_ids = tokenizer.encode(prompt, return_tensors='pt')
# Move input_ids to the same device as the model
input_ids = input_ids.to(model.device)
# Generate a response using the model with adjusted parameters
response_ids = model.generate(
input_ids,
max_length=max_new_tokens + input_ids.shape[1],
temperature=temperature, # Controls randomness. Lower values make text more deterministic.
top_p=top_p, # Nucleus sampling: higher values allow more diversity.
top_k=top_k, # Top-k sampling: limits the number of top tokens considered.
pad_token_id=tokenizer.eos_token_id,
do_sample=True # Enable sampling-based generation
)
# Decode the response
response = tokenizer.decode(response_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
return response
def get_prompt(message, chat_history):
texts = []
do_strip = False
for user_input, response in chat_history:
user_input = user_input.strip() if do_strip else user_input
do_strip = True
texts.append(f" {response.strip()} {user_input} ")
message = message.strip() if do_strip else message
texts.append(f"{message}")
return ''.join(texts)
def clear_and_save_textbox(message): return '', message
def display_input(message, history=[]):
history.append((message, ''))
return history
def delete_prev_fn(history=[]):
try:
message, _ = history.pop()
except IndexError:
message = ''
return history, message or ''
def generate(message, history_with_input, max_new_tokens, temperature, top_p, top_k):
if int(max_new_tokens) > MAX_MAX_NEW_TOKENS:
raise ValueError
history = history_with_input[:-1]
response = run(message, history, max_new_tokens, temperature, top_p, top_k)
yield history + [(message, response)]
def process_example(message):
generator = generate(message, [], 4056, 1.9, 0.95, 900)
for x in generator:
pass
return '', x
def check_input_token_length(message, chat_history):
input_token_length = len(message) + len(chat_history)
if input_token_length > MAX_INPUT_TOKEN_LENGTH:
raise gr.Error(f"The accumulated input is too long ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH}). Clear your chat history and try again.")
with gr.Blocks(theme='ParityError/Anime') as demo:
gr.Markdown(DESCRIPTION)
with gr.Group():
chatbot = gr.Chatbot(label='TonicYi-30B-200K')
with gr.Row():
textbox = gr.Textbox(
container=False,
show_label=False,
placeholder='As the dawn approached, they leant in and said',
scale=10
)
submit_button = gr.Button('Submit', variant='primary', scale=1, min_width=0)
with gr.Row():
retry_button = gr.Button('Retry', variant='secondary')
undo_button = gr.Button('Undo', variant='secondary')
clear_button = gr.Button('Clear', variant='secondary')
saved_input = gr.State()
with gr.Accordion(label='Advanced options', open=False):
# system_prompt = gr.Textbox(label='System prompt', value=DEFAULT_SYSTEM_PROMPT, lines=5, interactive=False)
max_new_tokens = gr.Slider(label='Max New Tokens', minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label='Temperature', minimum=0.1, maximum=2.0, step=0.1, value=0.1)
top_p = gr.Slider(label='Top-P (nucleus sampling)', minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label='Top-K', minimum=1, maximum=1000, step=1, value=10)
textbox.submit(
fn=clear_and_save_textbox,
inputs=textbox,
outputs=[textbox, saved_input],
api_name=False,
queue=False,
).then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
api_name=False,
queue=False,
).then(
fn=check_input_token_length,
inputs=[saved_input, chatbot],
api_name=False,
queue=False,
).success(
fn=generate,
inputs=[
saved_input,
chatbot,
max_new_tokens,
temperature,
top_p,
top_k,
],
outputs=chatbot,
api_name="Generate",
)
button_event_preprocess = submit_button.click(
fn=clear_and_save_textbox,
inputs=textbox,
outputs=[textbox, saved_input],
api_name=False,
queue=False,
).then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
api_name=False,
queue=False,
).then(
fn=check_input_token_length,
inputs=[saved_input, chatbot],
api_name=False,
queue=False,
).success(
fn=generate,
inputs=[
saved_input,
chatbot,
max_new_tokens,
temperature,
top_p,
top_k,
],
outputs=chatbot,
api_name="Cgenerate",
)
retry_button.click(
fn=delete_prev_fn,
inputs=chatbot,
outputs=[chatbot, saved_input],
api_name=False,
queue=False,
).then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
api_name=False,
queue=False,
).then(
fn=generate,
inputs=[
saved_input,
chatbot,
max_new_tokens,
temperature,
top_p,
top_k,
],
outputs=chatbot,
api_name=False,
)
undo_button.click(
fn=delete_prev_fn,
inputs=chatbot,
outputs=[chatbot, saved_input],
api_name=False,
queue=False,
).then(
fn=lambda x: x,
inputs=[saved_input],
outputs=textbox,
api_name=False,
queue=False,
)
clear_button.click(
fn=lambda: ([], ''),
outputs=[chatbot, saved_input],
queue=False,
api_name=False,
)
demo.queue(max_size=5).launch(show_api=True)