rekt2.0 / app.py
Tabish009's picture
Update app.py
57381b0 verified
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
import accelerate
# Load the model and tokenizer
@st.cache_resource
def load_model_and_tokenizer():
model_name_or_path = "anthropic/mistral-7b"
accelerator = accelerate.Accelerator(device_map="auto")
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map=accelerator.device_map)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
return model, tokenizer
# Function to generate the response
@st.cache_data
def generate_response(prompt):
prompt_template = f'''
<|prompter|>:{prompt}
<|assistant|>:
'''
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids
with accelerator.autocast():
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, max_new_tokens=512)
response = tokenizer.decode(output[0], skip_special_tokens=True)
return response
# Streamlit app
def main():
st.title("Mistral 7B Language Model")
model, tokenizer = load_model_and_tokenizer()
prompt = st.text_area("Enter your query:")
if st.button("Submit"):
with st.spinner("Generating response..."):
response = generate_response(prompt)
st.write(response)
if __name__ == "__main__":
main()