Tabish009 commited on
Commit
57381b0
·
verified ·
1 Parent(s): 51b78f1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -9
app.py CHANGED
@@ -1,13 +1,13 @@
1
  import streamlit as st
2
  from transformers import AutoModelForCausalLM, AutoTokenizer
3
- import subprocess
4
- subprocess.run(["pip", "install", "accelerate"])
5
 
6
  # Load the model and tokenizer
7
  @st.cache_resource
8
  def load_model_and_tokenizer():
9
- model_name_or_path = "mistralai/Mistral-7B-Instruct-v0.2"
10
- model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto")
 
11
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
12
  return model, tokenizer
13
 
@@ -15,21 +15,21 @@ def load_model_and_tokenizer():
15
  @st.cache_data
16
  def generate_response(prompt):
17
  prompt_template = f'''
18
- <|system|>: You are a helpful medical assistant created by M42 Health in the UAE.
19
  <|prompter|>:{prompt}
20
  <|assistant|>:
21
  '''
22
- input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
23
- output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, max_new_tokens=512)
 
24
  response = tokenizer.decode(output[0], skip_special_tokens=True)
25
  return response
26
 
27
  # Streamlit app
28
  def main():
29
- st.title("Med42 - Clinical Large Language Model")
30
  model, tokenizer = load_model_and_tokenizer()
31
 
32
- prompt = st.text_area("Enter your medical query:")
33
  if st.button("Submit"):
34
  with st.spinner("Generating response..."):
35
  response = generate_response(prompt)
 
1
  import streamlit as st
2
  from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import accelerate
 
4
 
5
  # Load the model and tokenizer
6
  @st.cache_resource
7
  def load_model_and_tokenizer():
8
+ model_name_or_path = "anthropic/mistral-7b"
9
+ accelerator = accelerate.Accelerator(device_map="auto")
10
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map=accelerator.device_map)
11
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
12
  return model, tokenizer
13
 
 
15
  @st.cache_data
16
  def generate_response(prompt):
17
  prompt_template = f'''
 
18
  <|prompter|>:{prompt}
19
  <|assistant|>:
20
  '''
21
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids
22
+ with accelerator.autocast():
23
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, max_new_tokens=512)
24
  response = tokenizer.decode(output[0], skip_special_tokens=True)
25
  return response
26
 
27
  # Streamlit app
28
  def main():
29
+ st.title("Mistral 7B Language Model")
30
  model, tokenizer = load_model_and_tokenizer()
31
 
32
+ prompt = st.text_area("Enter your query:")
33
  if st.button("Submit"):
34
  with st.spinner("Generating response..."):
35
  response = generate_response(prompt)