Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import os | |
from huggingface_hub import HfApi, hf_hub_download | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from concurrent.futures import ThreadPoolExecutor | |
from datetime import datetime | |
import threading # Added for locking | |
year = datetime.now().year | |
month = datetime.now().month | |
# Check if running in a Huggin Face Space | |
IS_SPACES = False | |
if os.getenv("SPACE_REPO_NAME"): | |
print("Running in a Hugging Face Space 🤗") | |
IS_SPACES = True | |
# Setup database sync for HF Spaces | |
if not os.path.exists("instance/tts_arena.db"): | |
os.makedirs("instance", exist_ok=True) | |
try: | |
print("Database not found, downloading from HF dataset...") | |
hf_hub_download( | |
repo_id="TTS-AGI/database-arena-v2", | |
filename="tts_arena.db", | |
repo_type="dataset", | |
local_dir="instance", | |
token=os.getenv("HF_TOKEN"), | |
) | |
print("Database downloaded successfully ✅") | |
except Exception as e: | |
print(f"Error downloading database from HF dataset: {str(e)} ⚠️") | |
from flask import ( | |
Flask, | |
render_template, | |
g, | |
request, | |
jsonify, | |
send_file, | |
redirect, | |
url_for, | |
session, | |
abort, | |
) | |
from flask_login import LoginManager, current_user | |
from models import * | |
from auth import auth, init_oauth, is_admin | |
from admin import admin | |
import os | |
from dotenv import load_dotenv | |
from flask_limiter import Limiter | |
from flask_limiter.util import get_remote_address | |
import uuid | |
import tempfile | |
import shutil | |
from tts import predict_tts | |
import random | |
import json | |
from datetime import datetime, timedelta | |
from flask_migrate import Migrate | |
import requests | |
import functools | |
import time # Added for potential retries | |
# Load environment variables | |
if not IS_SPACES: | |
load_dotenv() # Only load .env if not running in a Hugging Face Space | |
app = Flask(__name__) | |
app.config["SECRET_KEY"] = os.getenv("SECRET_KEY", os.urandom(24)) | |
app.config["SQLALCHEMY_DATABASE_URI"] = os.getenv( | |
"DATABASE_URI", "sqlite:///tts_arena.db" | |
) | |
app.config["SQLALCHEMY_TRACK_MODIFICATIONS"] = False | |
app.config["SESSION_COOKIE_SECURE"] = True | |
app.config["SESSION_COOKIE_SAMESITE"] = ( | |
"None" if IS_SPACES else "Lax" | |
) # HF Spaces uses iframes to load the app, so we need to set SAMESITE to None | |
app.config["PERMANENT_SESSION_LIFETIME"] = timedelta(days=30) # Set to desired duration | |
# Force HTTPS when running in HuggingFace Spaces | |
if IS_SPACES: | |
app.config["PREFERRED_URL_SCHEME"] = "https" | |
# Cloudflare Turnstile settings | |
app.config["TURNSTILE_ENABLED"] = ( | |
os.getenv("TURNSTILE_ENABLED", "False").lower() == "true" | |
) | |
app.config["TURNSTILE_SITE_KEY"] = os.getenv("TURNSTILE_SITE_KEY", "") | |
app.config["TURNSTILE_SECRET_KEY"] = os.getenv("TURNSTILE_SECRET_KEY", "") | |
app.config["TURNSTILE_VERIFY_URL"] = ( | |
"https://challenges.cloudflare.com/turnstile/v0/siteverify" | |
) | |
migrate = Migrate(app, db) | |
# Initialize extensions | |
db.init_app(app) | |
login_manager = LoginManager() | |
login_manager.init_app(app) | |
login_manager.login_view = "auth.login" | |
# Initialize OAuth | |
init_oauth(app) | |
# Configure rate limits | |
limiter = Limiter( | |
app=app, | |
key_func=get_remote_address, | |
default_limits=["2000 per day", "50 per minute"], | |
storage_uri="memory://", | |
) | |
# TTS Cache Configuration - Read from environment | |
TTS_CACHE_SIZE = int(os.getenv("TTS_CACHE_SIZE", "10")) | |
CACHE_AUDIO_SUBDIR = "cache" | |
tts_cache = {} # sentence -> {model_a, model_b, audio_a, audio_b, created_at} | |
tts_cache_lock = threading.Lock() | |
cache_executor = ThreadPoolExecutor(max_workers=2, thread_name_prefix='CacheReplacer') | |
all_harvard_sentences = [] # Keep the full list available | |
# Create temp directories | |
TEMP_AUDIO_DIR = os.path.join(tempfile.gettempdir(), "tts_arena_audio") | |
CACHE_AUDIO_DIR = os.path.join(TEMP_AUDIO_DIR, CACHE_AUDIO_SUBDIR) | |
os.makedirs(TEMP_AUDIO_DIR, exist_ok=True) | |
os.makedirs(CACHE_AUDIO_DIR, exist_ok=True) # Ensure cache subdir exists | |
# Store active TTS sessions | |
app.tts_sessions = {} | |
tts_sessions = app.tts_sessions | |
# Store active conversational sessions | |
app.conversational_sessions = {} | |
conversational_sessions = app.conversational_sessions | |
# Register blueprints | |
app.register_blueprint(auth, url_prefix="/auth") | |
app.register_blueprint(admin) | |
def load_user(user_id): | |
return User.query.get(int(user_id)) | |
def before_request(): | |
g.user = current_user | |
g.is_admin = is_admin(current_user) | |
# Ensure HTTPS for HuggingFace Spaces environment | |
if IS_SPACES and request.headers.get("X-Forwarded-Proto") == "http": | |
url = request.url.replace("http://", "https://", 1) | |
return redirect(url, code=301) | |
# Check if Turnstile verification is required | |
if app.config["TURNSTILE_ENABLED"]: | |
# Exclude verification routes | |
excluded_routes = ["verify_turnstile", "turnstile_page", "static"] | |
if request.endpoint not in excluded_routes: | |
# Check if user is verified | |
if not session.get("turnstile_verified"): | |
# Save original URL for redirect after verification | |
redirect_url = request.url | |
# Force HTTPS in HuggingFace Spaces | |
if IS_SPACES and redirect_url.startswith("http://"): | |
redirect_url = redirect_url.replace("http://", "https://", 1) | |
# If it's an API request, return a JSON response | |
if request.path.startswith("/api/"): | |
return jsonify({"error": "Turnstile verification required"}), 403 | |
# For regular requests, redirect to verification page | |
return redirect(url_for("turnstile_page", redirect_url=redirect_url)) | |
else: | |
# Check if verification has expired (default: 24 hours) | |
verification_timeout = ( | |
int(os.getenv("TURNSTILE_TIMEOUT_HOURS", "24")) * 3600 | |
) # Convert hours to seconds | |
verified_at = session.get("turnstile_verified_at", 0) | |
current_time = datetime.utcnow().timestamp() | |
if current_time - verified_at > verification_timeout: | |
# Verification expired, clear status and redirect to verification page | |
session.pop("turnstile_verified", None) | |
session.pop("turnstile_verified_at", None) | |
redirect_url = request.url | |
# Force HTTPS in HuggingFace Spaces | |
if IS_SPACES and redirect_url.startswith("http://"): | |
redirect_url = redirect_url.replace("http://", "https://", 1) | |
if request.path.startswith("/api/"): | |
return jsonify({"error": "Turnstile verification expired"}), 403 | |
return redirect( | |
url_for("turnstile_page", redirect_url=redirect_url) | |
) | |
def turnstile_page(): | |
"""Display Cloudflare Turnstile verification page""" | |
redirect_url = request.args.get("redirect_url", url_for("arena", _external=True)) | |
# Force HTTPS in HuggingFace Spaces | |
if IS_SPACES and redirect_url.startswith("http://"): | |
redirect_url = redirect_url.replace("http://", "https://", 1) | |
return render_template( | |
"turnstile.html", | |
turnstile_site_key=app.config["TURNSTILE_SITE_KEY"], | |
redirect_url=redirect_url, | |
) | |
def verify_turnstile(): | |
"""Verify Cloudflare Turnstile token""" | |
token = request.form.get("cf-turnstile-response") | |
redirect_url = request.form.get("redirect_url", url_for("arena", _external=True)) | |
# Force HTTPS in HuggingFace Spaces | |
if IS_SPACES and redirect_url.startswith("http://"): | |
redirect_url = redirect_url.replace("http://", "https://", 1) | |
if not token: | |
# If AJAX request, return JSON error | |
if request.headers.get("X-Requested-With") == "XMLHttpRequest": | |
return ( | |
jsonify({"success": False, "error": "Missing verification token"}), | |
400, | |
) | |
# Otherwise redirect back to turnstile page | |
return redirect(url_for("turnstile_page", redirect_url=redirect_url)) | |
# Verify token with Cloudflare | |
data = { | |
"secret": app.config["TURNSTILE_SECRET_KEY"], | |
"response": token, | |
"remoteip": request.remote_addr, | |
} | |
try: | |
response = requests.post(app.config["TURNSTILE_VERIFY_URL"], data=data) | |
result = response.json() | |
if result.get("success"): | |
# Set verification status in session | |
session["turnstile_verified"] = True | |
session["turnstile_verified_at"] = datetime.utcnow().timestamp() | |
# Determine response type based on request | |
is_xhr = request.headers.get("X-Requested-With") == "XMLHttpRequest" | |
accepts_json = "application/json" in request.headers.get("Accept", "") | |
# If AJAX or JSON request, return success JSON | |
if is_xhr or accepts_json: | |
return jsonify({"success": True, "redirect": redirect_url}) | |
# For regular form submissions, redirect to the target URL | |
return redirect(redirect_url) | |
else: | |
# Verification failed | |
app.logger.warning(f"Turnstile verification failed: {result}") | |
# If AJAX request, return JSON error | |
if request.headers.get("X-Requested-With") == "XMLHttpRequest": | |
return jsonify({"success": False, "error": "Verification failed"}), 403 | |
# Otherwise redirect back to turnstile page | |
return redirect(url_for("turnstile_page", redirect_url=redirect_url)) | |
except Exception as e: | |
app.logger.error(f"Turnstile verification error: {str(e)}") | |
# If AJAX request, return JSON error | |
if request.headers.get("X-Requested-With") == "XMLHttpRequest": | |
return ( | |
jsonify( | |
{"success": False, "error": "Server error during verification"} | |
), | |
500, | |
) | |
# Otherwise redirect back to turnstile page | |
return redirect(url_for("turnstile_page", redirect_url=redirect_url)) | |
with open("sentences.txt", "r") as f, open("emotional_sentences.txt", "r") as f_emotional: | |
# Store all sentences and clean them up | |
all_harvard_sentences = [line.strip() for line in f.readlines() if line.strip()] + [line.strip() for line in f_emotional.readlines() if line.strip()] | |
# Shuffle for initial random selection if needed, but main list remains ordered | |
initial_sentences = random.sample(all_harvard_sentences, min(len(all_harvard_sentences), 500)) # Limit initial pass for template | |
def arena(): | |
# Pass a subset of sentences for the random button fallback | |
return render_template("arena.html", harvard_sentences=json.dumps(initial_sentences)) | |
def leaderboard(): | |
tts_leaderboard = get_leaderboard_data(ModelType.TTS) | |
conversational_leaderboard = get_leaderboard_data(ModelType.CONVERSATIONAL) | |
top_voters = get_top_voters(10) # Get top 10 voters | |
# Initialize personal leaderboard data | |
tts_personal_leaderboard = None | |
conversational_personal_leaderboard = None | |
user_leaderboard_visibility = None | |
# If user is logged in, get their personal leaderboard and visibility setting | |
if current_user.is_authenticated: | |
tts_personal_leaderboard = get_user_leaderboard(current_user.id, ModelType.TTS) | |
conversational_personal_leaderboard = get_user_leaderboard( | |
current_user.id, ModelType.CONVERSATIONAL | |
) | |
user_leaderboard_visibility = current_user.show_in_leaderboard | |
# Get key dates for the timeline | |
tts_key_dates = get_key_historical_dates(ModelType.TTS) | |
conversational_key_dates = get_key_historical_dates(ModelType.CONVERSATIONAL) | |
# Format dates for display in the dropdown | |
formatted_tts_dates = [date.strftime("%B %Y") for date in tts_key_dates] | |
formatted_conversational_dates = [ | |
date.strftime("%B %Y") for date in conversational_key_dates | |
] | |
return render_template( | |
"leaderboard.html", | |
tts_leaderboard=tts_leaderboard, | |
conversational_leaderboard=conversational_leaderboard, | |
tts_personal_leaderboard=tts_personal_leaderboard, | |
conversational_personal_leaderboard=conversational_personal_leaderboard, | |
tts_key_dates=tts_key_dates, | |
conversational_key_dates=conversational_key_dates, | |
formatted_tts_dates=formatted_tts_dates, | |
formatted_conversational_dates=formatted_conversational_dates, | |
top_voters=top_voters, | |
user_leaderboard_visibility=user_leaderboard_visibility | |
) | |
def historical_leaderboard(model_type): | |
"""Get historical leaderboard data for a specific date""" | |
if model_type not in [ModelType.TTS, ModelType.CONVERSATIONAL]: | |
return jsonify({"error": "Invalid model type"}), 400 | |
# Get date from query parameter | |
date_str = request.args.get("date") | |
if not date_str: | |
return jsonify({"error": "Date parameter is required"}), 400 | |
try: | |
# Parse date from URL parameter (format: YYYY-MM-DD) | |
target_date = datetime.strptime(date_str, "%Y-%m-%d") | |
# Get historical leaderboard data | |
leaderboard_data = get_historical_leaderboard_data(model_type, target_date) | |
return jsonify( | |
{"date": target_date.strftime("%B %d, %Y"), "leaderboard": leaderboard_data} | |
) | |
except ValueError: | |
return jsonify({"error": "Invalid date format. Use YYYY-MM-DD"}), 400 | |
def about(): | |
return render_template("about.html") | |
# --- TTS Caching Functions --- | |
def generate_and_save_tts(text, model_id, output_dir): | |
"""Generates TTS and saves it to a specific directory, returning the full path.""" | |
temp_audio_path = None # Initialize to None | |
try: | |
app.logger.debug(f"[TTS Gen {model_id}] Starting generation for: '{text[:30]}...'") | |
# If predict_tts saves file itself and returns path: | |
temp_audio_path = predict_tts(text, model_id) | |
app.logger.debug(f"[TTS Gen {model_id}] predict_tts returned: {temp_audio_path}") | |
if not temp_audio_path or not os.path.exists(temp_audio_path): | |
app.logger.warning(f"[TTS Gen {model_id}] predict_tts failed or returned invalid path: {temp_audio_path}") | |
raise ValueError("predict_tts did not return a valid path or file does not exist") | |
file_uuid = str(uuid.uuid4()) | |
dest_path = os.path.join(output_dir, f"{file_uuid}.wav") | |
app.logger.debug(f"[TTS Gen {model_id}] Moving {temp_audio_path} to {dest_path}") | |
# Move the file generated by predict_tts to the target cache directory | |
shutil.move(temp_audio_path, dest_path) | |
app.logger.debug(f"[TTS Gen {model_id}] Move successful. Returning {dest_path}") | |
return dest_path | |
except Exception as e: | |
app.logger.error(f"Error generating/saving TTS for model {model_id} and text '{text[:30]}...': {str(e)}") | |
# Ensure temporary file from predict_tts (if any) is cleaned up | |
if temp_audio_path and os.path.exists(temp_audio_path): | |
try: | |
app.logger.debug(f"[TTS Gen {model_id}] Cleaning up temporary file {temp_audio_path} after error.") | |
os.remove(temp_audio_path) | |
except OSError: | |
pass # Ignore error if file couldn't be removed | |
return None | |
def _generate_cache_entry_task(sentence): | |
"""Task function to generate audio for a sentence and add to cache.""" | |
# Wrap the entire task in an application context | |
with app.app_context(): | |
if not sentence: | |
# Select a new sentence if not provided (for replacement) | |
with tts_cache_lock: | |
cached_keys = set(tts_cache.keys()) | |
available_sentences = [s for s in all_harvard_sentences if s not in cached_keys] | |
if not available_sentences: | |
app.logger.warning("No more unique Harvard sentences available for caching.") | |
return | |
sentence = random.choice(available_sentences) | |
# app.logger.info removed duplicate log | |
print(f"[Cache Task] Querying models for: '{sentence[:50]}...'") | |
available_models = Model.query.filter_by( | |
model_type=ModelType.TTS, is_active=True | |
).all() | |
if len(available_models) < 2: | |
app.logger.error("Not enough active TTS models to generate cache entry.") | |
return | |
try: | |
models = random.sample(available_models, 2) | |
model_a_id = models[0].id | |
model_b_id = models[1].id | |
# Generate audio concurrently using a local executor for clarity within the task | |
with ThreadPoolExecutor(max_workers=2, thread_name_prefix='AudioGen') as audio_executor: | |
future_a = audio_executor.submit(generate_and_save_tts, sentence, model_a_id, CACHE_AUDIO_DIR) | |
future_b = audio_executor.submit(generate_and_save_tts, sentence, model_b_id, CACHE_AUDIO_DIR) | |
timeout_seconds = 120 | |
audio_a_path = future_a.result(timeout=timeout_seconds) | |
audio_b_path = future_b.result(timeout=timeout_seconds) | |
if audio_a_path and audio_b_path: | |
with tts_cache_lock: | |
# Only add if the sentence isn't already back in the cache | |
# And ensure cache size doesn't exceed limit | |
if sentence not in tts_cache and len(tts_cache) < TTS_CACHE_SIZE: | |
tts_cache[sentence] = { | |
"model_a": model_a_id, | |
"model_b": model_b_id, | |
"audio_a": audio_a_path, | |
"audio_b": audio_b_path, | |
"created_at": datetime.utcnow(), | |
} | |
app.logger.info(f"Successfully cached entry for: '{sentence[:50]}...'") | |
elif sentence in tts_cache: | |
app.logger.warning(f"Sentence '{sentence[:50]}...' already re-cached. Discarding new generation.") | |
# Clean up the newly generated files if not added | |
if os.path.exists(audio_a_path): os.remove(audio_a_path) | |
if os.path.exists(audio_b_path): os.remove(audio_b_path) | |
else: # Cache is full | |
app.logger.warning(f"Cache is full ({len(tts_cache)} entries). Discarding new generation for '{sentence[:50]}...'.") | |
# Clean up the newly generated files if not added | |
if os.path.exists(audio_a_path): os.remove(audio_a_path) | |
if os.path.exists(audio_b_path): os.remove(audio_b_path) | |
else: | |
app.logger.error(f"Failed to generate one or both audio files for cache: '{sentence[:50]}...'") | |
# Clean up whichever file might have been created | |
if audio_a_path and os.path.exists(audio_a_path): os.remove(audio_a_path) | |
if audio_b_path and os.path.exists(audio_b_path): os.remove(audio_b_path) | |
except Exception as e: | |
# Log the exception within the app context | |
app.logger.error(f"Exception in _generate_cache_entry_task for '{sentence[:50]}...': {str(e)}", exc_info=True) | |
def initialize_tts_cache(): | |
print("Initializing TTS cache") | |
"""Selects initial sentences and starts generation tasks.""" | |
with app.app_context(): # Ensure access to models | |
if not all_harvard_sentences: | |
app.logger.error("Harvard sentences not loaded. Cannot initialize cache.") | |
return | |
initial_selection = random.sample(all_harvard_sentences, min(len(all_harvard_sentences), TTS_CACHE_SIZE)) | |
app.logger.info(f"Initializing TTS cache with {len(initial_selection)} sentences...") | |
for sentence in initial_selection: | |
# Use the main cache_executor for initial population too | |
cache_executor.submit(_generate_cache_entry_task, sentence) | |
app.logger.info("Submitted initial cache generation tasks.") | |
# --- End TTS Caching Functions --- | |
# Keep limit, cached responses are still requests | |
def generate_tts(): | |
# If verification not setup, handle it first | |
if app.config["TURNSTILE_ENABLED"] and not session.get("turnstile_verified"): | |
return jsonify({"error": "Turnstile verification required"}), 403 | |
data = request.json | |
text = data.get("text", "").strip() # Ensure text is stripped | |
if not text or len(text) > 1000: | |
return jsonify({"error": "Invalid or too long text"}), 400 | |
# --- Cache Check --- | |
cache_hit = False | |
session_data_from_cache = None | |
with tts_cache_lock: | |
if text in tts_cache: | |
cache_hit = True | |
cached_entry = tts_cache.pop(text) # Remove from cache immediately | |
app.logger.info(f"TTS Cache HIT for: '{text[:50]}...'") | |
# Prepare session data using cached info | |
session_id = str(uuid.uuid4()) | |
session_data_from_cache = { | |
"model_a": cached_entry["model_a"], | |
"model_b": cached_entry["model_b"], | |
"audio_a": cached_entry["audio_a"], # Paths are now from cache_dir | |
"audio_b": cached_entry["audio_b"], | |
"text": text, | |
"created_at": datetime.utcnow(), | |
"expires_at": datetime.utcnow() + timedelta(minutes=30), | |
"voted": False, | |
} | |
app.tts_sessions[session_id] = session_data_from_cache | |
# Trigger background task to replace the used cache entry | |
cache_executor.submit(_generate_cache_entry_task, None) # Pass None to signal replacement | |
if cache_hit and session_data_from_cache: | |
# Return response using cached data | |
# Note: The files are now managed by the session lifecycle (cleanup_session) | |
return jsonify( | |
{ | |
"session_id": session_id, | |
"audio_a": f"/api/tts/audio/{session_id}/a", | |
"audio_b": f"/api/tts/audio/{session_id}/b", | |
"expires_in": 1800, # 30 minutes in seconds | |
"cache_hit": True, | |
} | |
) | |
# --- End Cache Check --- | |
# --- Cache Miss: Generate on the fly --- | |
app.logger.info(f"TTS Cache MISS for: '{text[:50]}...'. Generating on the fly.") | |
available_models = Model.query.filter_by( | |
model_type=ModelType.TTS, is_active=True | |
).all() | |
if len(available_models) < 2: | |
return jsonify({"error": "Not enough TTS models available"}), 500 | |
selected_models = random.sample(available_models, 2) | |
try: | |
audio_files = [] | |
model_ids = [] | |
# Function to process a single model (generate directly to TEMP_AUDIO_DIR, not cache subdir) | |
def process_model_on_the_fly(model): | |
# Generate and save directly to the main temp dir | |
# Assume predict_tts handles saving temporary files | |
temp_audio_path = predict_tts(text, model.id) | |
if not temp_audio_path or not os.path.exists(temp_audio_path): | |
raise ValueError(f"predict_tts failed for model {model.id}") | |
# Create a unique name in the main TEMP_AUDIO_DIR for the session | |
file_uuid = str(uuid.uuid4()) | |
dest_path = os.path.join(TEMP_AUDIO_DIR, f"{file_uuid}.wav") | |
shutil.move(temp_audio_path, dest_path) # Move from predict_tts's temp location | |
return {"model_id": model.id, "audio_path": dest_path} | |
# Use ThreadPoolExecutor to process models concurrently | |
with ThreadPoolExecutor(max_workers=2) as executor: | |
results = list(executor.map(process_model_on_the_fly, selected_models)) | |
# Extract results | |
for result in results: | |
model_ids.append(result["model_id"]) | |
audio_files.append(result["audio_path"]) | |
# Create session | |
session_id = str(uuid.uuid4()) | |
app.tts_sessions[session_id] = { | |
"model_a": model_ids[0], | |
"model_b": model_ids[1], | |
"audio_a": audio_files[0], # Paths are now from TEMP_AUDIO_DIR directly | |
"audio_b": audio_files[1], | |
"text": text, | |
"created_at": datetime.utcnow(), | |
"expires_at": datetime.utcnow() + timedelta(minutes=30), | |
"voted": False, | |
} | |
# Return audio file paths and session | |
return jsonify( | |
{ | |
"session_id": session_id, | |
"audio_a": f"/api/tts/audio/{session_id}/a", | |
"audio_b": f"/api/tts/audio/{session_id}/b", | |
"expires_in": 1800, | |
"cache_hit": False, | |
} | |
) | |
except Exception as e: | |
app.logger.error(f"TTS on-the-fly generation error: {str(e)}", exc_info=True) | |
# Cleanup any files potentially created during the failed attempt | |
if 'results' in locals(): | |
for res in results: | |
if 'audio_path' in res and os.path.exists(res['audio_path']): | |
try: | |
os.remove(res['audio_path']) | |
except OSError: | |
pass | |
return jsonify({"error": "Failed to generate TTS"}), 500 | |
# --- End Cache Miss --- | |
def get_audio(session_id, model_key): | |
# If verification not setup, handle it first | |
if app.config["TURNSTILE_ENABLED"] and not session.get("turnstile_verified"): | |
return jsonify({"error": "Turnstile verification required"}), 403 | |
if session_id not in app.tts_sessions: | |
return jsonify({"error": "Invalid or expired session"}), 404 | |
session_data = app.tts_sessions[session_id] | |
# Check if session expired | |
if datetime.utcnow() > session_data["expires_at"]: | |
cleanup_session(session_id) | |
return jsonify({"error": "Session expired"}), 410 | |
if model_key == "a": | |
audio_path = session_data["audio_a"] | |
elif model_key == "b": | |
audio_path = session_data["audio_b"] | |
else: | |
return jsonify({"error": "Invalid model key"}), 400 | |
# Check if file exists | |
if not os.path.exists(audio_path): | |
return jsonify({"error": "Audio file not found"}), 404 | |
return send_file(audio_path, mimetype="audio/wav") | |
def submit_vote(): | |
# If verification not setup, handle it first | |
if app.config["TURNSTILE_ENABLED"] and not session.get("turnstile_verified"): | |
return jsonify({"error": "Turnstile verification required"}), 403 | |
data = request.json | |
session_id = data.get("session_id") | |
chosen_model_key = data.get("chosen_model") # "a" or "b" | |
if not session_id or session_id not in app.tts_sessions: | |
return jsonify({"error": "Invalid or expired session"}), 404 | |
if not chosen_model_key or chosen_model_key not in ["a", "b"]: | |
return jsonify({"error": "Invalid chosen model"}), 400 | |
session_data = app.tts_sessions[session_id] | |
# Check if session expired | |
if datetime.utcnow() > session_data["expires_at"]: | |
cleanup_session(session_id) | |
return jsonify({"error": "Session expired"}), 410 | |
# Check if already voted | |
if session_data["voted"]: | |
return jsonify({"error": "Vote already submitted for this session"}), 400 | |
# Get model IDs and audio paths | |
chosen_id = ( | |
session_data["model_a"] if chosen_model_key == "a" else session_data["model_b"] | |
) | |
rejected_id = ( | |
session_data["model_b"] if chosen_model_key == "a" else session_data["model_a"] | |
) | |
chosen_audio_path = ( | |
session_data["audio_a"] if chosen_model_key == "a" else session_data["audio_b"] | |
) | |
rejected_audio_path = ( | |
session_data["audio_b"] if chosen_model_key == "a" else session_data["audio_a"] | |
) | |
# Record vote in database | |
user_id = current_user.id if current_user.is_authenticated else None | |
vote, error = record_vote( | |
user_id, session_data["text"], chosen_id, rejected_id, ModelType.TTS | |
) | |
if error: | |
return jsonify({"error": error}), 500 | |
# --- Save preference data --- | |
try: | |
vote_uuid = str(uuid.uuid4()) | |
vote_dir = os.path.join("./votes", vote_uuid) | |
os.makedirs(vote_dir, exist_ok=True) | |
# Copy audio files | |
shutil.copy(chosen_audio_path, os.path.join(vote_dir, "chosen.wav")) | |
shutil.copy(rejected_audio_path, os.path.join(vote_dir, "rejected.wav")) | |
# Create metadata | |
chosen_model_obj = Model.query.get(chosen_id) | |
rejected_model_obj = Model.query.get(rejected_id) | |
metadata = { | |
"text": session_data["text"], | |
"chosen_model": chosen_model_obj.name if chosen_model_obj else "Unknown", | |
"chosen_model_id": chosen_model_obj.id if chosen_model_obj else "Unknown", | |
"rejected_model": rejected_model_obj.name if rejected_model_obj else "Unknown", | |
"rejected_model_id": rejected_model_obj.id if rejected_model_obj else "Unknown", | |
"session_id": session_id, | |
"timestamp": datetime.utcnow().isoformat(), | |
"username": current_user.username if current_user.is_authenticated else None, | |
"model_type": "TTS" | |
} | |
with open(os.path.join(vote_dir, "metadata.json"), "w") as f: | |
json.dump(metadata, f, indent=2) | |
except Exception as e: | |
app.logger.error(f"Error saving preference data for vote {session_id}: {str(e)}") | |
# Continue even if saving preference data fails, vote is already recorded | |
# Mark session as voted | |
session_data["voted"] = True | |
# Return updated models (use previously fetched objects) | |
return jsonify( | |
{ | |
"success": True, | |
"chosen_model": {"id": chosen_id, "name": chosen_model_obj.name if chosen_model_obj else "Unknown"}, | |
"rejected_model": { | |
"id": rejected_id, | |
"name": rejected_model_obj.name if rejected_model_obj else "Unknown", | |
}, | |
"names": { | |
"a": ( | |
chosen_model_obj.name if chosen_model_key == "a" else rejected_model_obj.name | |
if chosen_model_obj and rejected_model_obj else "Unknown" | |
), | |
"b": ( | |
rejected_model_obj.name if chosen_model_key == "a" else chosen_model_obj.name | |
if chosen_model_obj and rejected_model_obj else "Unknown" | |
), | |
}, | |
} | |
) | |
def cleanup_session(session_id): | |
"""Remove session and its audio files""" | |
if session_id in app.tts_sessions: | |
session = app.tts_sessions[session_id] | |
# Remove audio files | |
for audio_file in [session["audio_a"], session["audio_b"]]: | |
if os.path.exists(audio_file): | |
try: | |
os.remove(audio_file) | |
except Exception as e: | |
app.logger.error(f"Error removing audio file: {str(e)}") | |
# Remove session | |
del app.tts_sessions[session_id] | |
def generate_podcast(): | |
# If verification not setup, handle it first | |
if app.config["TURNSTILE_ENABLED"] and not session.get("turnstile_verified"): | |
return jsonify({"error": "Turnstile verification required"}), 403 | |
data = request.json | |
script = data.get("script") | |
if not script or not isinstance(script, list) or len(script) < 2: | |
return jsonify({"error": "Invalid script format or too short"}), 400 | |
# Validate script format | |
for line in script: | |
if not isinstance(line, dict) or "text" not in line or "speaker_id" not in line: | |
return ( | |
jsonify( | |
{ | |
"error": "Invalid script line format. Each line must have text and speaker_id" | |
} | |
), | |
400, | |
) | |
if ( | |
not line["text"] | |
or not isinstance(line["speaker_id"], int) | |
or line["speaker_id"] not in [0, 1] | |
): | |
return ( | |
jsonify({"error": "Invalid script content. Speaker ID must be 0 or 1"}), | |
400, | |
) | |
# Get two conversational models (currently only CSM and PlayDialog) | |
available_models = Model.query.filter_by( | |
model_type=ModelType.CONVERSATIONAL, is_active=True | |
).all() | |
if len(available_models) < 2: | |
return jsonify({"error": "Not enough conversational models available"}), 500 | |
selected_models = random.sample(available_models, 2) | |
try: | |
# Generate audio for both models concurrently | |
audio_files = [] | |
model_ids = [] | |
# Function to process a single model | |
def process_model(model): | |
# Call conversational TTS service | |
audio_content = predict_tts(script, model.id) | |
# Save to temp file with unique name | |
file_uuid = str(uuid.uuid4()) | |
dest_path = os.path.join(TEMP_AUDIO_DIR, f"{file_uuid}.wav") | |
with open(dest_path, "wb") as f: | |
f.write(audio_content) | |
return {"model_id": model.id, "audio_path": dest_path} | |
# Use ThreadPoolExecutor to process models concurrently | |
with ThreadPoolExecutor(max_workers=2) as executor: | |
results = list(executor.map(process_model, selected_models)) | |
# Extract results | |
for result in results: | |
model_ids.append(result["model_id"]) | |
audio_files.append(result["audio_path"]) | |
# Create session | |
session_id = str(uuid.uuid4()) | |
script_text = " ".join([line["text"] for line in script]) | |
app.conversational_sessions[session_id] = { | |
"model_a": model_ids[0], | |
"model_b": model_ids[1], | |
"audio_a": audio_files[0], | |
"audio_b": audio_files[1], | |
"text": script_text[:1000], # Limit text length | |
"created_at": datetime.utcnow(), | |
"expires_at": datetime.utcnow() + timedelta(minutes=30), | |
"voted": False, | |
"script": script, | |
} | |
# Return audio file paths and session | |
return jsonify( | |
{ | |
"session_id": session_id, | |
"audio_a": f"/api/conversational/audio/{session_id}/a", | |
"audio_b": f"/api/conversational/audio/{session_id}/b", | |
"expires_in": 1800, # 30 minutes in seconds | |
} | |
) | |
except Exception as e: | |
app.logger.error(f"Conversational generation error: {str(e)}") | |
return jsonify({"error": f"Failed to generate podcast: {str(e)}"}), 500 | |
def get_podcast_audio(session_id, model_key): | |
# If verification not setup, handle it first | |
if app.config["TURNSTILE_ENABLED"] and not session.get("turnstile_verified"): | |
return jsonify({"error": "Turnstile verification required"}), 403 | |
if session_id not in app.conversational_sessions: | |
return jsonify({"error": "Invalid or expired session"}), 404 | |
session_data = app.conversational_sessions[session_id] | |
# Check if session expired | |
if datetime.utcnow() > session_data["expires_at"]: | |
cleanup_conversational_session(session_id) | |
return jsonify({"error": "Session expired"}), 410 | |
if model_key == "a": | |
audio_path = session_data["audio_a"] | |
elif model_key == "b": | |
audio_path = session_data["audio_b"] | |
else: | |
return jsonify({"error": "Invalid model key"}), 400 | |
# Check if file exists | |
if not os.path.exists(audio_path): | |
return jsonify({"error": "Audio file not found"}), 404 | |
return send_file(audio_path, mimetype="audio/wav") | |
def submit_podcast_vote(): | |
# If verification not setup, handle it first | |
if app.config["TURNSTILE_ENABLED"] and not session.get("turnstile_verified"): | |
return jsonify({"error": "Turnstile verification required"}), 403 | |
data = request.json | |
session_id = data.get("session_id") | |
chosen_model_key = data.get("chosen_model") # "a" or "b" | |
if not session_id or session_id not in app.conversational_sessions: | |
return jsonify({"error": "Invalid or expired session"}), 404 | |
if not chosen_model_key or chosen_model_key not in ["a", "b"]: | |
return jsonify({"error": "Invalid chosen model"}), 400 | |
session_data = app.conversational_sessions[session_id] | |
# Check if session expired | |
if datetime.utcnow() > session_data["expires_at"]: | |
cleanup_conversational_session(session_id) | |
return jsonify({"error": "Session expired"}), 410 | |
# Check if already voted | |
if session_data["voted"]: | |
return jsonify({"error": "Vote already submitted for this session"}), 400 | |
# Get model IDs and audio paths | |
chosen_id = ( | |
session_data["model_a"] if chosen_model_key == "a" else session_data["model_b"] | |
) | |
rejected_id = ( | |
session_data["model_b"] if chosen_model_key == "a" else session_data["model_a"] | |
) | |
chosen_audio_path = ( | |
session_data["audio_a"] if chosen_model_key == "a" else session_data["audio_b"] | |
) | |
rejected_audio_path = ( | |
session_data["audio_b"] if chosen_model_key == "a" else session_data["audio_a"] | |
) | |
# Record vote in database | |
user_id = current_user.id if current_user.is_authenticated else None | |
vote, error = record_vote( | |
user_id, session_data["text"], chosen_id, rejected_id, ModelType.CONVERSATIONAL | |
) | |
if error: | |
return jsonify({"error": error}), 500 | |
# --- Save preference data ---\ | |
try: | |
vote_uuid = str(uuid.uuid4()) | |
vote_dir = os.path.join("./votes", vote_uuid) | |
os.makedirs(vote_dir, exist_ok=True) | |
# Copy audio files | |
shutil.copy(chosen_audio_path, os.path.join(vote_dir, "chosen.wav")) | |
shutil.copy(rejected_audio_path, os.path.join(vote_dir, "rejected.wav")) | |
# Create metadata | |
chosen_model_obj = Model.query.get(chosen_id) | |
rejected_model_obj = Model.query.get(rejected_id) | |
metadata = { | |
"script": session_data["script"], # Save the full script | |
"chosen_model": chosen_model_obj.name if chosen_model_obj else "Unknown", | |
"chosen_model_id": chosen_model_obj.id if chosen_model_obj else "Unknown", | |
"rejected_model": rejected_model_obj.name if rejected_model_obj else "Unknown", | |
"rejected_model_id": rejected_model_obj.id if rejected_model_obj else "Unknown", | |
"session_id": session_id, | |
"timestamp": datetime.utcnow().isoformat(), | |
"username": current_user.username if current_user.is_authenticated else None, | |
"model_type": "CONVERSATIONAL" | |
} | |
with open(os.path.join(vote_dir, "metadata.json"), "w") as f: | |
json.dump(metadata, f, indent=2) | |
except Exception as e: | |
app.logger.error(f"Error saving preference data for conversational vote {session_id}: {str(e)}") | |
# Continue even if saving preference data fails, vote is already recorded | |
# Mark session as voted | |
session_data["voted"] = True | |
# Return updated models (use previously fetched objects) | |
return jsonify( | |
{ | |
"success": True, | |
"chosen_model": {"id": chosen_id, "name": chosen_model_obj.name if chosen_model_obj else "Unknown"}, | |
"rejected_model": { | |
"id": rejected_id, | |
"name": rejected_model_obj.name if rejected_model_obj else "Unknown", | |
}, | |
"names": { | |
"a": Model.query.get(session_data["model_a"]).name, | |
"b": Model.query.get(session_data["model_b"]).name, | |
}, | |
} | |
) | |
def cleanup_conversational_session(session_id): | |
"""Remove conversational session and its audio files""" | |
if session_id in app.conversational_sessions: | |
session = app.conversational_sessions[session_id] | |
# Remove audio files | |
for audio_file in [session["audio_a"], session["audio_b"]]: | |
if os.path.exists(audio_file): | |
try: | |
os.remove(audio_file) | |
except Exception as e: | |
app.logger.error( | |
f"Error removing conversational audio file: {str(e)}" | |
) | |
# Remove session | |
del app.conversational_sessions[session_id] | |
# Schedule periodic cleanup | |
def setup_cleanup(): | |
def cleanup_expired_sessions(): | |
with app.app_context(): # Ensure app context for logging | |
current_time = datetime.utcnow() | |
# Cleanup TTS sessions | |
expired_tts_sessions = [ | |
sid | |
for sid, session_data in app.tts_sessions.items() | |
if current_time > session_data["expires_at"] | |
] | |
for sid in expired_tts_sessions: | |
cleanup_session(sid) | |
# Cleanup conversational sessions | |
expired_conv_sessions = [ | |
sid | |
for sid, session_data in app.conversational_sessions.items() | |
if current_time > session_data["expires_at"] | |
] | |
for sid in expired_conv_sessions: | |
cleanup_conversational_session(sid) | |
app.logger.info(f"Cleaned up {len(expired_tts_sessions)} TTS and {len(expired_conv_sessions)} conversational sessions.") | |
# Also cleanup potentially expired cache entries (e.g., > 1 hour old) | |
# This prevents stale cache entries if generation is slow or failing | |
# cleanup_stale_cache_entries() | |
# Run cleanup every 15 minutes | |
scheduler = BackgroundScheduler(daemon=True) # Run scheduler as daemon thread | |
scheduler.add_job(cleanup_expired_sessions, "interval", minutes=15) | |
scheduler.start() | |
print("Cleanup scheduler started") # Use print for startup messages | |
# Schedule periodic tasks (database sync and preference upload) | |
def setup_periodic_tasks(): | |
"""Setup periodic database synchronization and preference data upload for Spaces""" | |
if not IS_SPACES: | |
return | |
db_path = app.config["SQLALCHEMY_DATABASE_URI"].replace("sqlite:///", "instance/") # Get relative path | |
preferences_repo_id = "TTS-AGI/arena-v2-preferences" | |
database_repo_id = "TTS-AGI/database-arena-v2" | |
votes_dir = "./votes" | |
def sync_database(): | |
"""Uploads the database to HF dataset""" | |
with app.app_context(): # Ensure app context for logging | |
try: | |
if not os.path.exists(db_path): | |
app.logger.warning(f"Database file not found at {db_path}, skipping sync.") | |
return | |
api = HfApi(token=os.getenv("HF_TOKEN")) | |
api.upload_file( | |
path_or_fileobj=db_path, | |
path_in_repo="tts_arena.db", | |
repo_id=database_repo_id, | |
repo_type="dataset", | |
) | |
app.logger.info(f"Database uploaded to {database_repo_id} at {datetime.utcnow()}") | |
except Exception as e: | |
app.logger.error(f"Error uploading database to {database_repo_id}: {str(e)}") | |
def sync_preferences_data(): | |
"""Zips and uploads preference data folders in batches to HF dataset""" | |
with app.app_context(): # Ensure app context for logging | |
if not os.path.isdir(votes_dir): | |
return # Don't log every 5 mins if dir doesn't exist yet | |
temp_batch_dir = None # Initialize to manage cleanup | |
temp_individual_zip_dir = None # Initialize for individual zips | |
local_batch_zip_path = None # Initialize for batch zip path | |
try: | |
api = HfApi(token=os.getenv("HF_TOKEN")) | |
vote_uuids = [d for d in os.listdir(votes_dir) if os.path.isdir(os.path.join(votes_dir, d))] | |
if not vote_uuids: | |
return # No data to process | |
app.logger.info(f"Found {len(vote_uuids)} vote directories to process.") | |
# Create temporary directories | |
temp_batch_dir = tempfile.mkdtemp(prefix="hf_batch_") | |
temp_individual_zip_dir = tempfile.mkdtemp(prefix="hf_indiv_zips_") | |
app.logger.debug(f"Created temp directories: {temp_batch_dir}, {temp_individual_zip_dir}") | |
processed_vote_dirs = [] | |
individual_zips_in_batch = [] | |
# 1. Create individual zips and move them to the batch directory | |
for vote_uuid in vote_uuids: | |
dir_path = os.path.join(votes_dir, vote_uuid) | |
individual_zip_base_path = os.path.join(temp_individual_zip_dir, vote_uuid) | |
individual_zip_path = f"{individual_zip_base_path}.zip" | |
try: | |
shutil.make_archive(individual_zip_base_path, 'zip', dir_path) | |
app.logger.debug(f"Created individual zip: {individual_zip_path}") | |
# Move the created zip into the batch directory | |
final_individual_zip_path = os.path.join(temp_batch_dir, f"{vote_uuid}.zip") | |
shutil.move(individual_zip_path, final_individual_zip_path) | |
app.logger.debug(f"Moved individual zip to batch dir: {final_individual_zip_path}") | |
processed_vote_dirs.append(dir_path) # Mark original dir for later cleanup | |
individual_zips_in_batch.append(final_individual_zip_path) | |
except Exception as zip_err: | |
app.logger.error(f"Error creating or moving zip for {vote_uuid}: {str(zip_err)}") | |
# Clean up partial zip if it exists | |
if os.path.exists(individual_zip_path): | |
try: | |
os.remove(individual_zip_path) | |
except OSError: | |
pass | |
# Continue processing other votes | |
# Clean up the temporary dir used for creating individual zips | |
shutil.rmtree(temp_individual_zip_dir) | |
temp_individual_zip_dir = None # Mark as cleaned | |
app.logger.debug("Cleaned up temporary individual zip directory.") | |
if not individual_zips_in_batch: | |
app.logger.warning("No individual zips were successfully created for batching.") | |
# Clean up batch dir if it's empty or only contains failed attempts | |
if temp_batch_dir and os.path.exists(temp_batch_dir): | |
shutil.rmtree(temp_batch_dir) | |
temp_batch_dir = None | |
return | |
# 2. Create the batch zip file | |
batch_timestamp = datetime.utcnow().strftime("%Y%m%d_%H%M%S") | |
batch_uuid_short = str(uuid.uuid4())[:8] | |
batch_zip_filename = f"{batch_timestamp}_batch_{batch_uuid_short}.zip" | |
# Create batch zip in a standard temp location first | |
local_batch_zip_base = os.path.join(tempfile.gettempdir(), batch_zip_filename.replace('.zip', '')) | |
local_batch_zip_path = f"{local_batch_zip_base}.zip" | |
app.logger.info(f"Creating batch zip: {local_batch_zip_path} with {len(individual_zips_in_batch)} individual zips.") | |
shutil.make_archive(local_batch_zip_base, 'zip', temp_batch_dir) | |
app.logger.info(f"Batch zip created successfully: {local_batch_zip_path}") | |
# 3. Upload the batch zip file | |
hf_repo_path = f"votes/{year}/{month}/{batch_zip_filename}" | |
app.logger.info(f"Uploading batch zip to HF Hub: {preferences_repo_id}/{hf_repo_path}") | |
api.upload_file( | |
path_or_fileobj=local_batch_zip_path, | |
path_in_repo=hf_repo_path, | |
repo_id=preferences_repo_id, | |
repo_type="dataset", | |
commit_message=f"Add batch preference data {batch_zip_filename} ({len(individual_zips_in_batch)} votes)" | |
) | |
app.logger.info(f"Successfully uploaded batch {batch_zip_filename} to {preferences_repo_id}") | |
# 4. Cleanup after successful upload | |
app.logger.info("Cleaning up local files after successful upload.") | |
# Remove original vote directories that were successfully zipped and uploaded | |
for dir_path in processed_vote_dirs: | |
try: | |
shutil.rmtree(dir_path) | |
app.logger.debug(f"Removed original vote directory: {dir_path}") | |
except OSError as e: | |
app.logger.error(f"Error removing processed vote directory {dir_path}: {str(e)}") | |
# Remove the temporary batch directory (containing the individual zips) | |
shutil.rmtree(temp_batch_dir) | |
temp_batch_dir = None | |
app.logger.debug("Removed temporary batch directory.") | |
# Remove the local batch zip file | |
os.remove(local_batch_zip_path) | |
local_batch_zip_path = None | |
app.logger.debug("Removed local batch zip file.") | |
app.logger.info(f"Finished preference data sync. Uploaded batch {batch_zip_filename}.") | |
except Exception as e: | |
app.logger.error(f"Error during preference data batch sync: {str(e)}", exc_info=True) | |
# If upload failed, the local batch zip might exist, clean it up. | |
if local_batch_zip_path and os.path.exists(local_batch_zip_path): | |
try: | |
os.remove(local_batch_zip_path) | |
app.logger.debug("Cleaned up local batch zip after failed upload.") | |
except OSError as clean_err: | |
app.logger.error(f"Error cleaning up batch zip after failed upload: {clean_err}") | |
# Do NOT remove temp_batch_dir if it exists; its contents will be retried next time. | |
# Do NOT remove original vote directories if upload failed. | |
finally: | |
# Final cleanup for temporary directories in case of unexpected exits | |
if temp_individual_zip_dir and os.path.exists(temp_individual_zip_dir): | |
try: | |
shutil.rmtree(temp_individual_zip_dir) | |
except Exception as final_clean_err: | |
app.logger.error(f"Error in final cleanup (indiv zips): {final_clean_err}") | |
# Only clean up batch dir in finally block if it *wasn't* kept intentionally after upload failure | |
if temp_batch_dir and os.path.exists(temp_batch_dir): | |
# Check if an upload attempt happened and failed | |
upload_failed = 'e' in locals() and isinstance(e, Exception) # Crude check if exception occurred | |
if not upload_failed: # If no upload error or upload succeeded, clean up | |
try: | |
shutil.rmtree(temp_batch_dir) | |
except Exception as final_clean_err: | |
app.logger.error(f"Error in final cleanup (batch dir): {final_clean_err}") | |
else: | |
app.logger.warning("Keeping temporary batch directory due to upload failure for next attempt.") | |
# Schedule periodic tasks | |
scheduler = BackgroundScheduler() | |
# Sync database less frequently if needed, e.g., every 15 minutes | |
scheduler.add_job(sync_database, "interval", minutes=15, id="sync_db_job") | |
# Sync preferences more frequently | |
scheduler.add_job(sync_preferences_data, "interval", minutes=5, id="sync_pref_job") | |
scheduler.start() | |
print("Periodic tasks scheduler started (DB sync and Preferences upload)") # Use print for startup | |
def init_db(): | |
"""Initialize the database.""" | |
with app.app_context(): | |
db.create_all() | |
print("Database initialized!") | |
def toggle_leaderboard_visibility(): | |
"""Toggle whether the current user appears in the top voters leaderboard""" | |
if not current_user.is_authenticated: | |
return jsonify({"error": "You must be logged in to change this setting"}), 401 | |
new_status = toggle_user_leaderboard_visibility(current_user.id) | |
if new_status is None: | |
return jsonify({"error": "User not found"}), 404 | |
return jsonify({ | |
"success": True, | |
"visible": new_status, | |
"message": "You are now visible in the voters leaderboard" if new_status else "You are now hidden from the voters leaderboard" | |
}) | |
def get_cached_sentences(): | |
"""Returns a list of sentences currently available in the TTS cache.""" | |
with tts_cache_lock: | |
cached_keys = list(tts_cache.keys()) | |
return jsonify(cached_keys) | |
if __name__ == "__main__": | |
with app.app_context(): | |
# Ensure ./instance and ./votes directories exist | |
os.makedirs("instance", exist_ok=True) | |
os.makedirs("./votes", exist_ok=True) # Create votes directory if it doesn't exist | |
os.makedirs(CACHE_AUDIO_DIR, exist_ok=True) # Ensure cache audio dir exists | |
# Clean up old cache audio files on startup | |
try: | |
app.logger.info(f"Clearing old cache audio files from {CACHE_AUDIO_DIR}") | |
for filename in os.listdir(CACHE_AUDIO_DIR): | |
file_path = os.path.join(CACHE_AUDIO_DIR, filename) | |
try: | |
if os.path.isfile(file_path) or os.path.islink(file_path): | |
os.unlink(file_path) | |
elif os.path.isdir(file_path): | |
shutil.rmtree(file_path) | |
except Exception as e: | |
app.logger.error(f'Failed to delete {file_path}. Reason: {e}') | |
except Exception as e: | |
app.logger.error(f"Error clearing cache directory {CACHE_AUDIO_DIR}: {e}") | |
# Download database if it doesn't exist (only on initial space start) | |
if IS_SPACES and not os.path.exists(app.config["SQLALCHEMY_DATABASE_URI"].replace("sqlite:///", "")): | |
try: | |
print("Database not found, downloading from HF dataset...") | |
hf_hub_download( | |
repo_id="TTS-AGI/database-arena-v2", | |
filename="tts_arena.db", | |
repo_type="dataset", | |
local_dir="instance", # download to instance/ | |
token=os.getenv("HF_TOKEN"), | |
) | |
print("Database downloaded successfully ✅") | |
except Exception as e: | |
print(f"Error downloading database from HF dataset: {str(e)} ⚠️") | |
db.create_all() # Create tables if they don't exist | |
insert_initial_models() | |
# Setup background tasks | |
initialize_tts_cache() # Start populating the cache | |
setup_cleanup() | |
setup_periodic_tasks() # Renamed function call | |
# Configure Flask to recognize HTTPS when behind a reverse proxy | |
from werkzeug.middleware.proxy_fix import ProxyFix | |
# Apply ProxyFix middleware to handle reverse proxy headers | |
# This ensures Flask generates correct URLs with https scheme | |
# X-Forwarded-Proto header will be used to detect the original protocol | |
app.wsgi_app = ProxyFix(app.wsgi_app, x_proto=1, x_host=1) | |
# Force Flask to prefer HTTPS for generated URLs | |
app.config["PREFERRED_URL_SCHEME"] = "https" | |
from waitress import serve | |
# Configuration for 2 vCPUs: | |
# - threads: typically 4-8 threads per CPU core is a good balance | |
# - connection_limit: maximum concurrent connections | |
# - channel_timeout: prevent hanging connections | |
threads = 12 # 6 threads per vCPU is a good balance for mixed IO/CPU workloads | |
if IS_SPACES: | |
serve( | |
app, | |
host="0.0.0.0", | |
port=int(os.environ.get("PORT", 7860)), | |
threads=threads, | |
connection_limit=100, | |
channel_timeout=30, | |
url_scheme='https' | |
) | |
else: | |
print(f"Starting Waitress server with {threads} threads") | |
serve( | |
app, | |
host="0.0.0.0", | |
port=5000, | |
threads=threads, | |
connection_limit=100, | |
channel_timeout=30, | |
url_scheme='https' # Keep https for local dev if using proxy/tunnel | |
) | |