TSEditor / models /CSDI /diff_csdi.py
PeterYu's picture
update
2875fe6
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from linear_attention_transformer import LinearAttentionTransformer
def get_torch_trans(heads=8, layers=1, channels=64):
encoder_layer = nn.TransformerEncoderLayer(
d_model=channels, nhead=heads, dim_feedforward=64, activation="gelu"
)
return nn.TransformerEncoder(encoder_layer, num_layers=layers)
def get_linear_trans(heads=8,layers=1,channels=64,localheads=0,localwindow=0):
return LinearAttentionTransformer(
dim = channels,
depth = layers,
heads = heads,
max_seq_len = 256,
n_local_attn_heads = 0,
local_attn_window_size = 0,
)
def Conv1d_with_init(in_channels, out_channels, kernel_size):
layer = nn.Conv1d(in_channels, out_channels, kernel_size)
nn.init.kaiming_normal_(layer.weight)
return layer
class DiffusionEmbedding(nn.Module):
def __init__(self, num_steps, embedding_dim=128, projection_dim=None):
super().__init__()
if projection_dim is None:
projection_dim = embedding_dim
self.register_buffer(
"embedding",
self._build_embedding(num_steps, embedding_dim / 2),
persistent=False,
)
self.projection1 = nn.Linear(embedding_dim, projection_dim)
self.projection2 = nn.Linear(projection_dim, projection_dim)
def forward(self, diffusion_step):
x = self.embedding[diffusion_step]
x = self.projection1(x)
x = F.silu(x)
x = self.projection2(x)
x = F.silu(x)
return x
def _build_embedding(self, num_steps, dim=64):
steps = torch.arange(num_steps).unsqueeze(1) # (T,1)
frequencies = 10.0 ** (torch.arange(dim) / (dim - 1) * 4.0).unsqueeze(0) # (1,dim)
table = steps * frequencies # (T,dim)
table = torch.cat([torch.sin(table), torch.cos(table)], dim=1) # (T,dim*2)
return table
class diff_CSDI(nn.Module):
def __init__(self, config, inputdim=2):
super().__init__()
self.channels = config["channels"]
self.diffusion_embedding = DiffusionEmbedding(
num_steps=config["num_steps"],
embedding_dim=config["diffusion_embedding_dim"],
)
self.input_projection = Conv1d_with_init(inputdim, self.channels, 1)
self.output_projection1 = Conv1d_with_init(self.channels, self.channels, 1)
self.output_projection2 = Conv1d_with_init(self.channels, 1, 1)
nn.init.zeros_(self.output_projection2.weight)
self.residual_layers = nn.ModuleList(
[
ResidualBlock(
side_dim=config["side_dim"],
channels=self.channels,
diffusion_embedding_dim=config["diffusion_embedding_dim"],
nheads=config["nheads"],
is_linear=config["is_linear"],
)
for _ in range(config["layers"])
]
)
def forward(self, x, cond_info, diffusion_step):
B, inputdim, K, L = x.shape
x = x.reshape(B, inputdim, K * L)
x = self.input_projection(x)
x = F.relu(x)
x = x.reshape(B, self.channels, K, L)
diffusion_emb = self.diffusion_embedding(diffusion_step)
skip = []
for layer in self.residual_layers:
x, skip_connection = layer(x, cond_info, diffusion_emb)
skip.append(skip_connection)
x = torch.sum(torch.stack(skip), dim=0) / math.sqrt(len(self.residual_layers))
x = x.reshape(B, self.channels, K * L)
x = self.output_projection1(x) # (B,channel,K*L)
x = F.relu(x)
x = self.output_projection2(x) # (B,1,K*L)
x = x.reshape(B, K, L)
return x, 0
class ResidualBlock(nn.Module):
def __init__(self, side_dim, channels, diffusion_embedding_dim, nheads, is_linear=False):
super().__init__()
self.diffusion_projection = nn.Linear(diffusion_embedding_dim, channels)
self.cond_projection = Conv1d_with_init(side_dim, 2 * channels, 1)
self.mid_projection = Conv1d_with_init(channels, 2 * channels, 1)
self.output_projection = Conv1d_with_init(channels, 2 * channels, 1)
self.is_linear = is_linear
if is_linear:
self.time_layer = get_linear_trans(heads=nheads,layers=1,channels=channels)
self.feature_layer = get_linear_trans(heads=nheads,layers=1,channels=channels)
else:
self.time_layer = get_torch_trans(heads=nheads, layers=1, channels=channels)
self.feature_layer = get_torch_trans(heads=nheads, layers=1, channels=channels)
def forward_time(self, y, base_shape):
B, channel, K, L = base_shape
if L == 1:
return y
y = y.reshape(B, channel, K, L).permute(0, 2, 1, 3).reshape(B * K, channel, L)
if self.is_linear:
y = self.time_layer(y.permute(0, 2, 1)).permute(0, 2, 1)
else:
y = self.time_layer(y.permute(2, 0, 1)).permute(1, 2, 0)
y = y.reshape(B, K, channel, L).permute(0, 2, 1, 3).reshape(B, channel, K * L)
return y
def forward_feature(self, y, base_shape):
B, channel, K, L = base_shape
if K == 1:
return y
y = y.reshape(B, channel, K, L).permute(0, 3, 1, 2).reshape(B * L, channel, K)
if self.is_linear:
y = self.feature_layer(y.permute(0, 2, 1)).permute(0, 2, 1)
else:
y = self.feature_layer(y.permute(2, 0, 1)).permute(1, 2, 0)
y = y.reshape(B, L, channel, K).permute(0, 2, 3, 1).reshape(B, channel, K * L)
return y
def forward(self, x, cond_info, diffusion_emb):
B, channel, K, L = x.shape
base_shape = x.shape
x = x.reshape(B, channel, K * L)
diffusion_emb = self.diffusion_projection(diffusion_emb).unsqueeze(-1) # (B,channel,1)
y = x + diffusion_emb
y = self.forward_time(y, base_shape)
y = self.forward_feature(y, base_shape) # (B,channel,K*L)
y = self.mid_projection(y) # (B,2*channel,K*L)
_, cond_dim, _, _ = cond_info.shape
cond_info = cond_info.reshape(B, cond_dim, K * L)
cond_info = self.cond_projection(cond_info) # (B,2*channel,K*L)
# RuntimeError: Given groups=1, weight of size [128, 28, 1], expected input[64, 145, 672] to have 28 channels, but got 145 channels instead
y = y + cond_info
gate, filter = torch.chunk(y, 2, dim=1)
y = torch.sigmoid(gate) * torch.tanh(filter) # (B,channel,K*L)
y = self.output_projection(y)
residual, skip = torch.chunk(y, 2, dim=1)
x = x.reshape(base_shape)
residual = residual.reshape(base_shape)
skip = skip.reshape(base_shape)
return (x + residual) / math.sqrt(2.0), skip