tskwvr / taskweaver /llm /ollama.py
TRaw's picture
Upload 297 files
3d3d712
import json
from contextlib import contextmanager
from typing import Any, Generator, List, Optional
import requests
from injector import inject
from taskweaver.llm.base import CompletionService, EmbeddingService, LLMServiceConfig
from taskweaver.llm.util import ChatMessageType, format_chat_message
class OllamaServiceConfig(LLMServiceConfig):
def _configure(self) -> None:
self._set_name("ollama")
shared_api_base = self.llm_module_config.api_base
self.api_base = self._get_str(
"api_base",
shared_api_base if shared_api_base is not None else "http://localhost:11434",
)
shared_model = self.llm_module_config.model
self.model = self._get_str(
"model",
shared_model if shared_model is not None else "llama2",
)
shared_backup_model = self.llm_module_config.backup_model
self.backup_model = self._get_str(
"backup_model",
shared_backup_model if shared_backup_model is not None else self.model,
)
shared_embedding_model = self.llm_module_config.embedding_model
self.embedding_model = self._get_str(
"embedding_model",
shared_embedding_model if shared_embedding_model is not None else self.model,
)
shared_response_format = self.llm_module_config.response_format
self.response_format = self._get_enum(
"response_format",
options=["json", "json_object", "text"],
default=shared_response_format if shared_response_format is not None else "text",
)
if self.response_format == "json_object":
self.response_format = "json"
class OllamaService(CompletionService, EmbeddingService):
@inject
def __init__(self, config: OllamaServiceConfig):
self.config = config
def chat_completion(
self,
messages: List[ChatMessageType],
use_backup_engine: bool = False,
stream: bool = True,
temperature: Optional[float] = None,
max_tokens: Optional[int] = None,
top_p: Optional[float] = None,
stop: Optional[List[str]] = None,
**kwargs: Any,
) -> Generator[ChatMessageType, None, None]:
try:
return self._chat_completion(
messages=messages,
use_backup_engine=use_backup_engine,
stream=stream,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
stop=stop,
**kwargs,
)
except Exception:
return self._completion(
messages=messages,
use_backup_engine=use_backup_engine,
stream=stream,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
stop=stop,
**kwargs,
)
def _chat_completion(
self,
messages: List[ChatMessageType],
use_backup_engine: bool = False,
stream: bool = True,
temperature: Optional[float] = None,
max_tokens: Optional[int] = None,
top_p: Optional[float] = None,
stop: Optional[List[str]] = None,
**kwargs: Any,
) -> Generator[ChatMessageType, None, None]:
api_endpoint = "/api/chat"
payload = {
"model": self.config.model if not use_backup_engine else self.config.backup_model,
"messages": messages,
"stream": stream,
}
if self.config.response_format == "json":
payload["format"] = "json"
if stream is False:
with self._request_api(api_endpoint, payload) as resp:
if resp.status_code != 200:
raise Exception(
f"Failed to get completion with error code {resp.status_code}: {resp.text}",
)
response: str = resp.json()["response"]
yield format_chat_message("assistant", response)
with self._request_api(api_endpoint, payload, stream=True) as resp:
if resp.status_code != 200:
raise Exception(
f"Failed to get completion with error code {resp.status_code}: {resp.text}",
)
for chunk_obj in self._stream_process(resp):
if "error" in chunk_obj:
raise Exception(
f"Failed to get completion with error: {chunk_obj['error']}",
)
if "message" in chunk_obj:
message = chunk_obj["message"]
yield format_chat_message("assistant", message["content"])
def _completion(
self,
messages: List[ChatMessageType],
use_backup_engine: bool = False,
stream: bool = True,
temperature: Optional[float] = None,
max_tokens: Optional[int] = None,
top_p: Optional[float] = None,
stop: Optional[List[str]] = None,
**kwargs: Any,
) -> Generator[ChatMessageType, None, None]:
api_endpoint = "/api/generate"
payload = {
"model": self.config.model if not use_backup_engine else self.config.backup_model,
"prompt": "",
"stream": stream,
}
if self.config.response_format == "json":
payload["format"] = "json"
for message in messages:
content: str = message["content"]
if message["role"] == "system":
payload["system"] = content
else:
payload["prompt"] = f"{payload['prompt']}\n{content}"
if stream is False:
with self._request_api(api_endpoint, payload) as resp:
if resp.status_code != 200:
raise Exception(
f"Failed to get completion with error code {resp.status_code}: {resp.text}",
)
response: str = resp.json()["response"]
yield format_chat_message("assistant", response)
with self._request_api(api_endpoint, payload, stream=True) as resp:
if resp.status_code != 200:
raise Exception(
f"Failed to get completion with error code {resp.status_code}: {resp.text}",
)
for chunk_obj in self._stream_process(resp):
if "error" in chunk_obj:
raise Exception(
f"Failed to get completion with error: {chunk_obj['error']}",
)
if "response" in chunk_obj:
response = chunk_obj["response"]
yield format_chat_message("assistant", response)
def get_embeddings(self, strings: List[str]) -> List[List[float]]:
return [self._get_embedding(string) for string in strings]
def _stream_process(self, resp: requests.Response) -> Generator[Any, None, None]:
for line in resp.iter_lines():
line_str = line.decode("utf-8")
if line_str and line_str.strip() != "":
yield json.loads(line_str)
def _get_embedding(self, string: str) -> List[float]:
payload = {"model": self.config.embedding_model, "prompt": string}
with self._request_api("/api/embeddings", payload) as resp:
if resp.status_code != 200:
raise Exception(
f"Failed to get embedding with error code {resp.status_code}: {resp.text}",
)
return resp.json()["embedding"]
@contextmanager
def _request_api(self, api_path: str, payload: Any, stream: bool = False):
url = f"{self.config.api_base}{api_path}"
with requests.Session() as session:
with session.post(url, json=payload, stream=stream) as resp:
yield resp