Spaces:
Running
on
Zero
Running
on
Zero
import concurrent.futures | |
import random | |
import gradio as gr | |
# from fal_api_utils import load_fal_model | |
from .imagenhub_utils import load_imagenhub_model | |
import spaces | |
import requests | |
import io, base64, json | |
from PIL import Image | |
import os | |
IMAGE_GENERATION_MODELS = ['imagenhub_LCM_generation','imagenhub_SDXLTurbo_generation','imagenhub_SDXL_generation', 'imagenhub_PixArtAlpha_generation', | |
'imagenhub_OpenJourney_generation','imagenhub_SDXLLightning_generation', 'imagenhub_StableCascade_generation', | |
'imagenhub_PlayGroundV2_generation', 'imagenhub_PlayGroundV2.5_generation'] | |
IMAGE_EDITION_MODELS = ['imagenhub_CycleDiffusion_edition', 'imagenhub_Pix2PixZero_edition', 'imagenhub_Prompt2prompt_edition', | |
'imagenhub_SDEdit_edition', 'imagenhub_InstructPix2Pix_edition', 'imagenhub_MagicBrush_edition', 'imagenhub_PNP_edition'] | |
class ModelManager: | |
def __init__(self): | |
self.model_ig_list = IMAGE_GENERATION_MODELS | |
self.model_ie_list = IMAGE_EDITION_MODELS | |
self.loaded_models = {} | |
# @spaces.GPU | |
def load_model_pipe(self, model_name): | |
model_source, model_name, model_type = model_name.split("_") | |
if not model_name in self.loaded_models: | |
if model_source == "imagenhub": | |
pipe = load_imagenhub_model(model_name) | |
# elif model_source == "fal": | |
# pipe = load_fal_model(model_name, model_type) | |
else: | |
raise ValueError(f"Model source {model_source} not supported") | |
self.loaded_models[model_name] = pipe | |
else: | |
pipe = self.loaded_models[model_name] | |
return pipe | |
def generate_image_playground(self, model_name, prompt): | |
if model_name == "imagenhub_PlayGroundV2_generation": | |
model_name = "Playground_v2" | |
elif model_name == "imagenhub_PlayGroundV2.5_generation": | |
model_name = "Playground_v2.5" | |
headers = { | |
'Content-Type': 'application/json', | |
'Authorization': os.environ['PlaygroundAPI'], | |
} | |
data = json.dumps({"prompt": prompt, "filter_model": model_name, "scheduler": "DPMPP_2M_K", "guidance_scale": 3}) | |
response = requests.post('https://playground.com/api/models/external/v1', headers=headers, data=data) | |
response.raise_for_status() | |
json_obj = response.json() | |
image_base64 = json_obj['images'][0] | |
img = Image.open(io.BytesIO(base64.decodebytes(bytes(image_base64, "utf-8")))) | |
return img | |
def generate_image_ig(self, prompt, model_name): | |
if 'playground' in model_name.lower(): | |
result = self.generate_image_playground(model_name=model_name, prompt=prompt) | |
else: | |
pipe = self.load_model_pipe(model_name) | |
result = pipe(prompt=prompt) | |
return result | |
def generate_image_ig_parallel_anony(self, prompt, model_A, model_B): | |
if model_A == "" and model_B == "": | |
model_names = random.sample([model for model in self.model_ig_list], 2) | |
else: | |
model_names = [model_A, model_B] | |
results = [] | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
future_to_result = {executor.submit(self.generate_image_ig, prompt, model): model for model in model_names} | |
for future in concurrent.futures.as_completed(future_to_result): | |
result = future.result() | |
results.append(result) | |
return results[0], results[1], model_names[0], model_names[1] | |
def generate_image_ig_parallel(self, prompt, model_A, model_B): | |
results = [] | |
model_names = [model_A, model_B] | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
future_to_result = {executor.submit(self.generate_image_ig, prompt, model): model for model in model_names} | |
for future in concurrent.futures.as_completed(future_to_result): | |
result = future.result() | |
results.append(result) | |
return results[0], results[1] | |
def generate_image_ie(self, textbox_source, textbox_target, textbox_instruct, source_image, model_name): | |
pipe = self.load_model_pipe(model_name) | |
result = pipe(src_image = source_image, src_prompt = textbox_source, target_prompt = textbox_target, instruct_prompt = textbox_instruct) | |
return result | |
def generate_image_ie_parallel(self, textbox_source, textbox_target, textbox_instruct, source_image, model_A, model_B): | |
results = [] | |
model_names = [model_A, model_B] | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
future_to_result = {executor.submit(self.generate_image_ie, textbox_source, textbox_target, textbox_instruct, source_image, model): model for model in model_names} | |
for future in concurrent.futures.as_completed(future_to_result): | |
result = future.result() | |
results.append(result) | |
return results[0], results[1] | |
def generate_image_ie_parallel_anony(self, textbox_source, textbox_target, textbox_instruct, source_image, model_A, model_B): | |
if model_A == "" and model_B == "": | |
model_names = random.sample([model for model in self.model_ie_list], 2) | |
else: | |
model_names = [model_A, model_B] | |
results = [] | |
# model_names = [model_A, model_B] | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
future_to_result = {executor.submit(self.generate_image_ie, textbox_source, textbox_target, textbox_instruct, source_image, model): model for model in model_names} | |
for future in concurrent.futures.as_completed(future_to_result): | |
result = future.result() | |
results.append(result) | |
return results[0], results[1], model_names[0], model_names[1] |