GenAI-Arena / model /model_manager.py
wenhu's picture
Update model/model_manager.py
513f815 verified
raw
history blame
13.4 kB
import concurrent.futures
import random
import gradio as gr
import requests
import io, base64, json, os
import spaces
from PIL import Image
from .models import IMAGE_GENERATION_MODELS, IMAGE_EDITION_MODELS, VIDEO_GENERATION_MODELS, MUSEUM_UNSUPPORTED_MODELS, DESIRED_APPEAR_MODEL, load_pipeline
from .fetch_museum_results import draw_from_imagen_museum, draw2_from_imagen_museum, draw_from_videogen_museum, draw2_from_videogen_museum
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
class ModelManager:
def __init__(self):
self.model_ig_list = IMAGE_GENERATION_MODELS
self.model_ie_list = IMAGE_EDITION_MODELS
self.model_vg_list = VIDEO_GENERATION_MODELS
self.excluding_model_list = MUSEUM_UNSUPPORTED_MODELS
self.desired_model_list = DESIRED_APPEAR_MODEL
self.load_guard()
self.loaded_models = {}
def load_model_pipe(self, model_name):
if not model_name in self.loaded_models:
pipe = load_pipeline(model_name)
self.loaded_models[model_name] = pipe
else:
pipe = self.loaded_models[model_name]
return pipe
def load_guard(self):
model_id = "meta-llama/Meta-Llama-Guard-2-8B"
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16
self.tokenizer = AutoTokenizer.from_pretrained(model_id, token=os.environ['HF_GUARD'])
self.guard = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype, device_map=device, token=os.environ['HF_GUARD'])
@spaces.GPU(duration=30)
def NSFW_filter(self, prompt):
chat = [{"role": "user", "content": prompt}]
input_ids = self.tokenizer.apply_chat_template(chat, return_tensors="pt").to('cuda')
self.guard.cuda()
output = self.guard.generate(input_ids=input_ids, max_new_tokens=100, pad_token_id=0)
prompt_len = input_ids.shape[-1]
result = self.tokenizer.decode(output[0][prompt_len:], skip_special_tokens=True)
return result
@spaces.GPU(duration=120)
def generate_image_ig(self, prompt, model_name):
if self.NSFW_filter(prompt) == 'safe':
print('The prompt is safe')
pipe = self.load_model_pipe(model_name)
result = pipe(prompt=prompt)
else:
result = ''
return result
def generate_image_ig_api(self, prompt, model_name):
if self.NSFW_filter(prompt) == 'safe':
print('The prompt is safe')
pipe = self.load_model_pipe(model_name)
result = pipe(prompt=prompt)
else:
result = ''
return result
def generate_image_ig_museum(self, model_name):
model_name = model_name.split('_')[1]
result_list = draw_from_imagen_museum("t2i", model_name)
image_link = result_list[0]
prompt = result_list[1]
return image_link, prompt
def generate_image_ig_parallel_anony(self, prompt, model_A, model_B):
# Using list comprehension to get the difference between two lists
picking_list = [item for item in self.model_ig_list if item not in self.excluding_model_list]
if model_A == "" and model_B == "":
model_names = random.sample([model for model in picking_list], 2)
else:
model_names = [model_A, model_B]
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [executor.submit(self.generate_image_ig, prompt, model) if model.startswith("imagenhub")
else executor.submit(self.generate_image_ig_api, prompt, model) for model in model_names]
results = [future.result() for future in futures]
return results[0], results[1], model_names[0], model_names[1]
def generate_image_ig_museum_parallel_anony(self, model_A, model_B):
# Using list comprehension to get the difference between two lists
picking_list = [item for item in self.model_ig_list if item not in self.excluding_model_list]
if model_A == "" and model_B == "":
model_names = random.sample([model for model in picking_list], 2)
else:
model_names = [model_A, model_B]
with concurrent.futures.ThreadPoolExecutor() as executor:
model_1 = model_names[0].split('_')[1]
model_2 = model_names[1].split('_')[1]
result_list = draw2_from_imagen_museum("t2i", model_1, model_2)
image_links = result_list[0]
prompt_list = result_list[1]
return image_links[0], image_links[1], model_names[0], model_names[1], prompt_list[0]
def generate_image_ig_parallel(self, prompt, model_A, model_B):
model_names = [model_A, model_B]
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [executor.submit(self.generate_image_ig, prompt, model) if model.startswith("imagenhub")
else executor.submit(self.generate_image_ig_api, prompt, model) for model in model_names]
results = [future.result() for future in futures]
return results[0], results[1]
def generate_image_ig_museum_parallel(self, model_A, model_B):
with concurrent.futures.ThreadPoolExecutor() as executor:
model_1 = model_A.split('_')[1]
model_2 = model_B.split('_')[1]
result_list = draw2_from_imagen_museum("t2i", model_1, model_2)
image_links = result_list[0]
prompt_list = result_list[1]
return image_links[0], image_links[1], prompt_list[0]
@spaces.GPU(duration=200)
def generate_image_ie(self, textbox_source, textbox_target, textbox_instruct, source_image, model_name):
# if self.NSFW_filter(" ".join([textbox_source, textbox_target, textbox_instruct])) == 'safe':
pipe = self.load_model_pipe(model_name)
result = pipe(src_image = source_image, src_prompt = textbox_source, target_prompt = textbox_target, instruct_prompt = textbox_instruct)
# else:
# result = ''
return result
def generate_image_ie_museum(self, model_name):
model_name = model_name.split('_')[1]
result_list = draw_from_imagen_museum("tie", model_name)
image_links = result_list[0]
prompt_list = result_list[1]
# image_links = [src, model]
# prompt_list = [source_caption, target_caption, instruction]
return image_links[0], image_links[1], prompt_list[0], prompt_list[1], prompt_list[2]
def generate_image_ie_parallel(self, textbox_source, textbox_target, textbox_instruct, source_image, model_A, model_B):
model_names = [model_A, model_B]
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [
executor.submit(self.generate_image_ie, textbox_source, textbox_target, textbox_instruct, source_image,
model) for model in model_names]
results = [future.result() for future in futures]
return results[0], results[1]
def generate_image_ie_museum_parallel(self, model_A, model_B):
model_names = [model_A, model_B]
with concurrent.futures.ThreadPoolExecutor() as executor:
model_1 = model_names[0].split('_')[1]
model_2 = model_names[1].split('_')[1]
result_list = draw2_from_imagen_museum("tie", model_1, model_2)
image_links = result_list[0]
prompt_list = result_list[1]
# image_links = [src, model_A, model_B]
# prompt_list = [source_caption, target_caption, instruction]
return image_links[0], image_links[1], image_links[2], prompt_list[0], prompt_list[1], prompt_list[2]
def generate_image_ie_parallel_anony(self, textbox_source, textbox_target, textbox_instruct, source_image, model_A, model_B):
# Using list comprehension to get the difference between two lists
picking_list = [item for item in self.model_ie_list if item not in self.excluding_model_list]
if model_A == "" and model_B == "":
model_names = random.sample([model for model in picking_list], 2)
else:
model_names = [model_A, model_B]
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [executor.submit(self.generate_image_ie, textbox_source, textbox_target, textbox_instruct, source_image, model) for model in model_names]
results = [future.result() for future in futures]
return results[0], results[1], model_names[0], model_names[1]
def generate_image_ie_museum_parallel_anony(self, model_A, model_B):
# Using list comprehension to get the difference between two lists
picking_list = [item for item in self.model_ie_list if item not in self.excluding_model_list]
if model_A == "" and model_B == "":
model_names = random.sample([model for model in picking_list], 2)
else:
model_names = [model_A, model_B]
with concurrent.futures.ThreadPoolExecutor() as executor:
model_1 = model_names[0].split('_')[1]
model_2 = model_names[1].split('_')[1]
result_list = draw2_from_imagen_museum("tie", model_1, model_2)
image_links = result_list[0]
prompt_list = result_list[1]
# image_links = [src, model_A, model_B]
# prompt_list = [source_caption, target_caption, instruction]
return image_links[0], image_links[1], image_links[2], prompt_list[0], prompt_list[1], prompt_list[2], model_names[0], model_names[1]
@spaces.GPU(duration=150)
def generate_video_vg(self, prompt, model_name):
# if self.NSFW_filter(prompt) == 'safe':
pipe = self.load_model_pipe(model_name)
result = pipe(prompt=prompt)
# else:
# result = ''
return result
def generate_video_vg_api(self, prompt, model_name):
# if self.NSFW_filter(prompt) == 'safe':
pipe = self.load_model_pipe(model_name)
result = pipe(prompt=prompt)
# else:
# result = ''
return result
def generate_video_vg_museum(self, model_name):
model_name = model_name.split('_')[1]
result_list = draw_from_videogen_museum("t2v", model_name)
video_link = result_list[0]
prompt = result_list[1]
return video_link, prompt
def generate_video_vg_parallel_anony(self, prompt, model_A, model_B):
# Using list comprehension to get the difference between two lists
picking_list = [item for item in self.model_vg_list if item not in self.excluding_model_list]
if model_A == "" and model_B == "":
model_names = random.sample([model for model in picking_list], 2)
else:
model_names = [model_A, model_B]
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [executor.submit(self.generate_video_vg, prompt, model) if model.startswith("videogenhub")
else executor.submit(self.generate_video_vg_api, prompt, model) for model in model_names]
results = [future.result() for future in futures]
return results[0], results[1], model_names[0], model_names[1]
def generate_video_vg_museum_parallel_anony(self, model_A, model_B):
# Using list comprehension to get the difference between two lists
picking_list = [item for item in self.model_vg_list if item not in self.excluding_model_list]
#picking_list = [item for item in picking_list if item not in self.desired_model_list]
if model_A == "" and model_B == "":
model_names = random.sample([model for model in picking_list], 2)
#override the random selection
#model_names[random.choice([0, 1])] = random.choice(self.desired_model_list)
else:
model_names = [model_A, model_B]
with concurrent.futures.ThreadPoolExecutor() as executor:
model_1 = model_names[0].split('_')[1]
model_2 = model_names[1].split('_')[1]
result_list = draw2_from_videogen_museum("t2v", model_1, model_2)
video_links = result_list[0]
prompt_list = result_list[1]
return video_links[0], video_links[1], model_names[0], model_names[1], prompt_list[0]
def generate_video_vg_parallel(self, prompt, model_A, model_B):
model_names = [model_A, model_B]
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [executor.submit(self.generate_video_vg, prompt, model) if model.startswith("videogenhub")
else executor.submit(self.generate_video_vg_api, prompt, model) for model in model_names]
results = [future.result() for future in futures]
return results[0], results[1]
def generate_video_vg_museum_parallel(self, model_A, model_B):
model_names = [model_A, model_B]
with concurrent.futures.ThreadPoolExecutor() as executor:
model_1 = model_A.split('_')[1]
model_2 = model_B.split('_')[1]
result_list = draw2_from_videogen_museum("t2v", model_1, model_2)
video_links = result_list[0]
prompt_list = result_list[1]
return video_links[0], video_links[1], prompt_list[0]