Spaces:
Running
on
Zero
Running
on
Zero
import concurrent.futures | |
import random | |
import gradio as gr | |
import requests | |
import io, base64, json, os | |
import spaces | |
from PIL import Image | |
from .models import IMAGE_GENERATION_MODELS, IMAGE_EDITION_MODELS, VIDEO_GENERATION_MODELS, MUSEUM_UNSUPPORTED_MODELS, DESIRED_APPEAR_MODEL, load_pipeline | |
from .fetch_museum_results import draw_from_imagen_museum, draw2_from_imagen_museum, draw_from_videogen_museum, draw2_from_videogen_museum | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
class ModelManager: | |
def __init__(self): | |
self.model_ig_list = IMAGE_GENERATION_MODELS | |
self.model_ie_list = IMAGE_EDITION_MODELS | |
self.model_vg_list = VIDEO_GENERATION_MODELS | |
self.excluding_model_list = MUSEUM_UNSUPPORTED_MODELS | |
self.desired_model_list = DESIRED_APPEAR_MODEL | |
self.load_guard() | |
self.loaded_models = {} | |
def load_model_pipe(self, model_name): | |
if not model_name in self.loaded_models: | |
pipe = load_pipeline(model_name) | |
self.loaded_models[model_name] = pipe | |
else: | |
pipe = self.loaded_models[model_name] | |
return pipe | |
def load_guard(self): | |
model_id = "meta-llama/Meta-Llama-Guard-2-8B" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
dtype = torch.bfloat16 | |
self.tokenizer = AutoTokenizer.from_pretrained(model_id, token=os.environ['HF_GUARD']) | |
self.guard = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype, device_map=device, token=os.environ['HF_GUARD']) | |
def NSFW_filter(self, prompt): | |
chat = [{"role": "user", "content": prompt}] | |
input_ids = self.tokenizer.apply_chat_template(chat, return_tensors="pt").to('cuda') | |
self.guard.cuda() | |
output = self.guard.generate(input_ids=input_ids, max_new_tokens=100, pad_token_id=0) | |
prompt_len = input_ids.shape[-1] | |
result = self.tokenizer.decode(output[0][prompt_len:], skip_special_tokens=True) | |
return result | |
def generate_image_ig(self, prompt, model_name): | |
if self.NSFW_filter(prompt) == 'safe': | |
print('The prompt is safe') | |
pipe = self.load_model_pipe(model_name) | |
result = pipe(prompt=prompt) | |
else: | |
result = '' | |
return result | |
def generate_image_ig_api(self, prompt, model_name): | |
if self.NSFW_filter(prompt) == 'safe': | |
print('The prompt is safe') | |
pipe = self.load_model_pipe(model_name) | |
result = pipe(prompt=prompt) | |
else: | |
result = '' | |
return result | |
def generate_image_ig_museum(self, model_name): | |
model_name = model_name.split('_')[1] | |
result_list = draw_from_imagen_museum("t2i", model_name) | |
image_link = result_list[0] | |
prompt = result_list[1] | |
return image_link, prompt | |
def generate_image_ig_parallel_anony(self, prompt, model_A, model_B): | |
# Using list comprehension to get the difference between two lists | |
picking_list = [item for item in self.model_ig_list if item not in self.excluding_model_list] | |
if model_A == "" and model_B == "": | |
model_names = random.sample([model for model in picking_list], 2) | |
else: | |
model_names = [model_A, model_B] | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
futures = [executor.submit(self.generate_image_ig, prompt, model) if model.startswith("imagenhub") | |
else executor.submit(self.generate_image_ig_api, prompt, model) for model in model_names] | |
results = [future.result() for future in futures] | |
return results[0], results[1], model_names[0], model_names[1] | |
def generate_image_ig_museum_parallel_anony(self, model_A, model_B): | |
# Using list comprehension to get the difference between two lists | |
picking_list = [item for item in self.model_ig_list if item not in self.excluding_model_list] | |
if model_A == "" and model_B == "": | |
model_names = random.sample([model for model in picking_list], 2) | |
else: | |
model_names = [model_A, model_B] | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
model_1 = model_names[0].split('_')[1] | |
model_2 = model_names[1].split('_')[1] | |
result_list = draw2_from_imagen_museum("t2i", model_1, model_2) | |
image_links = result_list[0] | |
prompt_list = result_list[1] | |
return image_links[0], image_links[1], model_names[0], model_names[1], prompt_list[0] | |
def generate_image_ig_parallel(self, prompt, model_A, model_B): | |
model_names = [model_A, model_B] | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
futures = [executor.submit(self.generate_image_ig, prompt, model) if model.startswith("imagenhub") | |
else executor.submit(self.generate_image_ig_api, prompt, model) for model in model_names] | |
results = [future.result() for future in futures] | |
return results[0], results[1] | |
def generate_image_ig_museum_parallel(self, model_A, model_B): | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
model_1 = model_A.split('_')[1] | |
model_2 = model_B.split('_')[1] | |
result_list = draw2_from_imagen_museum("t2i", model_1, model_2) | |
image_links = result_list[0] | |
prompt_list = result_list[1] | |
return image_links[0], image_links[1], prompt_list[0] | |
def generate_image_ie(self, textbox_source, textbox_target, textbox_instruct, source_image, model_name): | |
# if self.NSFW_filter(" ".join([textbox_source, textbox_target, textbox_instruct])) == 'safe': | |
pipe = self.load_model_pipe(model_name) | |
result = pipe(src_image = source_image, src_prompt = textbox_source, target_prompt = textbox_target, instruct_prompt = textbox_instruct) | |
# else: | |
# result = '' | |
return result | |
def generate_image_ie_museum(self, model_name): | |
model_name = model_name.split('_')[1] | |
result_list = draw_from_imagen_museum("tie", model_name) | |
image_links = result_list[0] | |
prompt_list = result_list[1] | |
# image_links = [src, model] | |
# prompt_list = [source_caption, target_caption, instruction] | |
return image_links[0], image_links[1], prompt_list[0], prompt_list[1], prompt_list[2] | |
def generate_image_ie_parallel(self, textbox_source, textbox_target, textbox_instruct, source_image, model_A, model_B): | |
model_names = [model_A, model_B] | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
futures = [ | |
executor.submit(self.generate_image_ie, textbox_source, textbox_target, textbox_instruct, source_image, | |
model) for model in model_names] | |
results = [future.result() for future in futures] | |
return results[0], results[1] | |
def generate_image_ie_museum_parallel(self, model_A, model_B): | |
model_names = [model_A, model_B] | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
model_1 = model_names[0].split('_')[1] | |
model_2 = model_names[1].split('_')[1] | |
result_list = draw2_from_imagen_museum("tie", model_1, model_2) | |
image_links = result_list[0] | |
prompt_list = result_list[1] | |
# image_links = [src, model_A, model_B] | |
# prompt_list = [source_caption, target_caption, instruction] | |
return image_links[0], image_links[1], image_links[2], prompt_list[0], prompt_list[1], prompt_list[2] | |
def generate_image_ie_parallel_anony(self, textbox_source, textbox_target, textbox_instruct, source_image, model_A, model_B): | |
# Using list comprehension to get the difference between two lists | |
picking_list = [item for item in self.model_ie_list if item not in self.excluding_model_list] | |
if model_A == "" and model_B == "": | |
model_names = random.sample([model for model in picking_list], 2) | |
else: | |
model_names = [model_A, model_B] | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
futures = [executor.submit(self.generate_image_ie, textbox_source, textbox_target, textbox_instruct, source_image, model) for model in model_names] | |
results = [future.result() for future in futures] | |
return results[0], results[1], model_names[0], model_names[1] | |
def generate_image_ie_museum_parallel_anony(self, model_A, model_B): | |
# Using list comprehension to get the difference between two lists | |
picking_list = [item for item in self.model_ie_list if item not in self.excluding_model_list] | |
if model_A == "" and model_B == "": | |
model_names = random.sample([model for model in picking_list], 2) | |
else: | |
model_names = [model_A, model_B] | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
model_1 = model_names[0].split('_')[1] | |
model_2 = model_names[1].split('_')[1] | |
result_list = draw2_from_imagen_museum("tie", model_1, model_2) | |
image_links = result_list[0] | |
prompt_list = result_list[1] | |
# image_links = [src, model_A, model_B] | |
# prompt_list = [source_caption, target_caption, instruction] | |
return image_links[0], image_links[1], image_links[2], prompt_list[0], prompt_list[1], prompt_list[2], model_names[0], model_names[1] | |
def generate_video_vg(self, prompt, model_name): | |
# if self.NSFW_filter(prompt) == 'safe': | |
pipe = self.load_model_pipe(model_name) | |
result = pipe(prompt=prompt) | |
# else: | |
# result = '' | |
return result | |
def generate_video_vg_api(self, prompt, model_name): | |
# if self.NSFW_filter(prompt) == 'safe': | |
pipe = self.load_model_pipe(model_name) | |
result = pipe(prompt=prompt) | |
# else: | |
# result = '' | |
return result | |
def generate_video_vg_museum(self, model_name): | |
model_name = model_name.split('_')[1] | |
result_list = draw_from_videogen_museum("t2v", model_name) | |
video_link = result_list[0] | |
prompt = result_list[1] | |
return video_link, prompt | |
def generate_video_vg_parallel_anony(self, prompt, model_A, model_B): | |
# Using list comprehension to get the difference between two lists | |
picking_list = [item for item in self.model_vg_list if item not in self.excluding_model_list] | |
if model_A == "" and model_B == "": | |
model_names = random.sample([model for model in picking_list], 2) | |
else: | |
model_names = [model_A, model_B] | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
futures = [executor.submit(self.generate_video_vg, prompt, model) if model.startswith("videogenhub") | |
else executor.submit(self.generate_video_vg_api, prompt, model) for model in model_names] | |
results = [future.result() for future in futures] | |
return results[0], results[1], model_names[0], model_names[1] | |
def generate_video_vg_museum_parallel_anony(self, model_A, model_B): | |
# Using list comprehension to get the difference between two lists | |
picking_list = [item for item in self.model_vg_list if item not in self.excluding_model_list] | |
#picking_list = [item for item in picking_list if item not in self.desired_model_list] | |
if model_A == "" and model_B == "": | |
model_names = random.sample([model for model in picking_list], 2) | |
#override the random selection | |
#model_names[random.choice([0, 1])] = random.choice(self.desired_model_list) | |
else: | |
model_names = [model_A, model_B] | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
model_1 = model_names[0].split('_')[1] | |
model_2 = model_names[1].split('_')[1] | |
result_list = draw2_from_videogen_museum("t2v", model_1, model_2) | |
video_links = result_list[0] | |
prompt_list = result_list[1] | |
return video_links[0], video_links[1], model_names[0], model_names[1], prompt_list[0] | |
def generate_video_vg_parallel(self, prompt, model_A, model_B): | |
model_names = [model_A, model_B] | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
futures = [executor.submit(self.generate_video_vg, prompt, model) if model.startswith("videogenhub") | |
else executor.submit(self.generate_video_vg_api, prompt, model) for model in model_names] | |
results = [future.result() for future in futures] | |
return results[0], results[1] | |
def generate_video_vg_museum_parallel(self, model_A, model_B): | |
model_names = [model_A, model_B] | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
model_1 = model_A.split('_')[1] | |
model_2 = model_B.split('_')[1] | |
result_list = draw2_from_videogen_museum("t2v", model_1, model_2) | |
video_links = result_list[0] | |
prompt_list = result_list[1] | |
return video_links[0], video_links[1], prompt_list[0] |