VayuBuddy / app.py
Zeel's picture
Update app.py
3ff7e5e verified
import streamlit as st
import os
import json
import pandas as pd
import random
from os.path import join
from datetime import datetime
from src import preprocess_and_load_df, load_agent, ask_agent, decorate_with_code, show_response, get_from_user, load_smart_df, ask_question
from dotenv import load_dotenv
from langchain_groq.chat_models import ChatGroq
from langchain_google_genai import GoogleGenerativeAI
from streamlit_feedback import streamlit_feedback
from huggingface_hub import HfApi
st.set_page_config(layout="wide")
# Load environment variables : Groq and Hugging Face API keys
load_dotenv()
Groq_Token = os.environ["GROQ_API_KEY"]
hf_token = os.environ["HF_TOKEN"]
gemini_token = os.environ["GEMINI_TOKEN"]
models = {"llama3":"llama3-70b-8192","mixtral": "mixtral-8x7b-32768", "llama2": "llama2-70b-4096", "gemma": "gemma-7b-it", "gemini-pro": "gemini-pro"}
self_path = os.path.dirname(os.path.abspath(__file__))
# Using HTML and CSS to center the title
st.write(
"""
<style>
.title {
text-align: center;
color: #17becf;
}
</style>
""",
unsafe_allow_html=True,
)
# Displaying the centered title
st.markdown("<div style='text-align:center; padding: 20px;'>VayuBuddy makes pollution monitoring easier by bridging the gap between users and datasets.<br>No coding required—just meaningful insights at your fingertips!</div>", unsafe_allow_html=True)
# Center-aligned instruction text with bold formatting
st.markdown("<div style='text-align:center;'>Choose a query from <b>Select a prompt</b> or type a query in the <b>chat box</b>, select a <b>LLM</b> (Large Language Model), and press enter to generate a response.</div>", unsafe_allow_html=True)
# os.environ["PANDASAI_API_KEY"] = "$2a$10$gbmqKotzJOnqa7iYOun8eO50TxMD/6Zw1pLI2JEoqncwsNx4XeBS2"
# with open(join(self_path, "context1.txt")) as f:
# context = f.read().strip()
# agent = load_agent(join(self_path, "app_trial_1.csv"), context)
# df = preprocess_and_load_df(join(self_path, "Data.csv"))
# inference_server = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2"
# inference_server = "https://api-inference.huggingface.co/models/codellama/CodeLlama-13b-hf"
# inference_server = "https://api-inference.huggingface.co/models/pandasai/bamboo-llm"
image_path = "IITGN_Logo.png"
# Display images and text in three columns with specified ratios
col1, col2, col3 = st.sidebar.columns((1.0, 2, 1.0))
with col2:
st.image(image_path, use_column_width=True)
st.markdown("<h1 class='title'>VayuBuddy</h1>", unsafe_allow_html=True)
model_name = st.sidebar.selectbox("Select LLM:", ["llama3","mixtral", "gemma", "gemini-pro"])
questions = ['Custom Prompt']
with open(join(self_path, "questions.txt")) as f:
questions += f.read().split("\n")
waiting_lines = ("Thinking...", "Just a moment...", "Let me think...", "Working on it...", "Processing...", "Hold on...", "One moment...", "On it...")
# agent = load_agent(df, context="", inference_server=inference_server, name=model_name)
# Initialize chat history
if "responses" not in st.session_state:
st.session_state.responses = []
### Old code for feedback
# def push_to_dataset(feedback, comments,output,code,error):
# # Load existing dataset or create a new one if it doesn't exist
# try:
# ds = load_dataset("YashB1/Feedbacks_eoc", split="evaluation")
# except FileNotFoundError:
# # If dataset doesn't exist, create a new one
# ds = Dataset.from_dict({"feedback": [], "comments": [], "error": [], "output": [], "code": []})
# # Add new feedback to the dataset
# new_data = {"feedback": [feedback], "comments": [comments], "error": [error], "output": [output], "code": [code]} # Convert feedback and comments to lists
# new_data = Dataset.from_dict(new_data)
# ds = concatenate_datasets([ds, new_data])
# # Push the updated dataset to Hugging Face Hub
# ds.push_to_hub("YashB1/Feedbacks_eoc", split="evaluation")
def upload_feedback():
print("Uploading feedback")
data = {
"feedback": feedback['score'],
"comment": feedback['text'], "error": error, "output": output, "prompt": last_prompt, "code": code}
# generate a random file name based on current time-stamp: YYYY-MM-DD_HH-MM-SS
random_folder_name = str(datetime.now()).replace(" ", "_").replace(":", "-").replace(".", "-")
print("Random folder:", random_folder_name)
save_path = f"/tmp/vayubuddy_feedback.md"
path_in_repo = f"data/{random_folder_name}/feedback.md"
with open(save_path, "w") as f:
template = f"""Prompt: {last_prompt}
Output: {output}
Code:
```py
{code}
```
Error: {error}
Feedback: {feedback['score']}
Comments: {feedback['text']}
"""
print(template, file=f)
api = HfApi(token=hf_token)
api.upload_file(
path_or_fileobj=save_path,
path_in_repo=path_in_repo,
repo_id="SustainabilityLabIITGN/VayuBuddy_Feedback",
repo_type="dataset",
)
if status['is_image']:
api.upload_file(
path_or_fileobj=output,
path_in_repo=f"data/{random_folder_name}/plot.png",
repo_id="SustainabilityLabIITGN/VayuBuddy_Feedback",
repo_type="dataset",
)
print("Feedback uploaded successfully!")
# Display chat responses from history on app rerun
print("#"*10)
for response_id, response in enumerate(st.session_state.responses):
status = show_response(st, response)
if response["role"] == "assistant":
feedback_key = f"feedback_{int(response_id/2)}"
print("response_id", response_id, "feedback_key", feedback_key)
error = response["error"]
output = response["content"]
last_prompt = response["last_prompt"]
code = response["gen_code"]
if "feedback" in st.session_state.responses[response_id]:
st.write("Feedback:", st.session_state.responses[response_id]["feedback"])
else:
## !!! This does on work on Safari !!!
# feedback = streamlit_feedback(feedback_type="thumbs",
# optional_text_label="[Optional] Please provide extra information", on_submit=upload_feedback, key=feedback_key)
# Display thumbs up/down buttons for feedback
thumbs = st.radio("We would appreciate your feedback!", ('👍', '👎'), index=None, key=feedback_key)
if thumbs:
# Text input for comments
comments = st.text_area("[Optional] Please provide extra information", key=feedback_key+"_comments")
feedback = {"score": thumbs, "text": comments}
if st.button("Submit", on_click=upload_feedback, key=feedback_key+"_submit"):
st.session_state.responses[response_id]["feedback"] = feedback
st.success("Feedback uploaded successfully!")
print("#"*10)
show = True
prompt = st.sidebar.selectbox("Select a Prompt:", questions, key="prompt_key")
if prompt == 'Custom Prompt':
show = False
# React to user input
prompt = st.chat_input("Ask me anything about air quality!", key=1000)
if prompt :
show = True
else:
# placeholder for chat input
st.chat_input("Select 'Select a Prompt' -> 'Custom Prompt' in the sidebar to ask your own questions.", key=1000, disabled=True)
if "last_prompt" in st.session_state:
last_prompt = st.session_state["last_prompt"]
last_model_name = st.session_state["last_model_name"]
if (prompt == last_prompt) and (model_name == last_model_name):
show = False
if prompt:
st.sidebar.info("Select 'Custom Prompt' to ask your own questions.")
if show:
# Add user input to chat history
user_response = get_from_user(prompt)
st.session_state.responses.append(user_response)
# select random waiting line
with st.spinner(random.choice(waiting_lines)):
ran = False
for i in range(1):
print(f"Attempt {i+1}")
if model_name == "gemini-pro":
llm = GoogleGenerativeAI(model=models[model_name], google_api_key=os.getenv("GEMINI_TOKEN"), temperature=0)
else:
llm = ChatGroq(model=models[model_name], api_key=os.getenv("GROQ_API"), temperature=0)
df_check = pd.read_csv("Data.csv")
df_check["Timestamp"] = pd.to_datetime(df_check["Timestamp"])
df_check = df_check.head(5)
new_line = "\n"
parameters = {"font.size": 12,"figure.dpi": 600}
template = f"""```python
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams.update({parameters})
df = pd.read_csv("Data.csv")
df["Timestamp"] = pd.to_datetime(df["Timestamp"])
import geopandas as gpd
india = gpd.read_file("https://gist.githubusercontent.com/jbrobst/56c13bbbf9d97d187fea01ca62ea5112/raw/e388c4cae20aa53cb5090210a42ebb9b765c0a36/india_states.geojson")
india.loc[india['ST_NM'].isin(['Ladakh', 'Jammu & Kashmir']), 'ST_NM'] = 'Jammu and Kashmir'
import uuid
# df.dtypes
{new_line.join(map(lambda x: '# '+x, str(df_check.dtypes).split(new_line)))}
{new_line.join(['# '+line for line in prompt.strip().split(new_line)])}
"""
query = f"""I have a pandas dataframe data of PM2.5 and PM10.
* The columns are 'Timestamp', 'station', 'PM2.5', 'PM10', 'address', 'city', 'latitude', 'longitude',and 'state'.
* Frequency of data is daily.
* `pollution` generally means `PM2.5`.
* You already have df, so don't read the csv file
* Don't print anything, but save result in a variable `answer` and make it global.
* Unless explicitly mentioned, don't consider the result as a plot.
* PM2.5 guidelines: India: 60, WHO: 15.
* PM10 guidelines: India: 100, WHO: 50.
* If result is a plot, show the India and WHO guidelines in the plot.
* If result is a plot make it in tight layout, save it and save path in `answer`. Example: `answer='plot.png'`. Use uuid to save the plot.
* If result is a plot, rotate x-axis tick labels by 45 degrees,
* If result is not a plot, save it as a string in `answer`. Example: `answer='The city is Mumbai'`
* I have a geopandas.geodataframe india containining the coordinates required to plot Indian Map with states.
* If the query asks you to plot on India Map, use that geodataframe to plot and then add more points as per the requirements using the similar code as follows : v = ax.scatter(df['longitude'], df['latitude']). If the colorbar is required, use the following code : plt.colorbar(v)
* If the query asks you to plot on India Map plot the India Map in Beige color
* Whenever you do any sort of aggregation, report the corresponding standard deviation, standard error and the number of data points for that aggregation.
* Whenever you're reporting a floating point number, round it to 2 decimal places.
* Always report the unit of the data. Example: `The average PM2.5 is 45.67 µg/m³`
Complete the following code.
{template}
"""
answer = None
code = None
error = None
try:
if model_name == "gemini-pro":
answer = llm.invoke(query)
else:
answer = llm.invoke(query).content
code = f"""
{template.split("```python")[1].split("```")[0]}
{answer.split("```python")[1].split("```")[0]}
"""
# update variable `answer` when code is executed
exec(code)
ran = True
except Exception as e:
error = e
if code is not None:
answer = f"Error executing the code...\n\n{e}"
if type(answer) != str:
answer = f"!!!Faced an error while working on your query. Please try again!!!"
response = {"role": "assistant", "content": answer, "gen_code": code, "ex_code": code, "last_prompt": prompt, "error": error}
# Get response from agent
# response = ask_question(model_name=model_name, question=prompt)
# response = ask_agent(agent, prompt)
if ran:
break
# Append agent response to chat history
st.session_state.responses.append(response)
st.session_state['last_prompt'] = prompt
st.session_state['last_model_name'] = model_name
st.rerun()
# contact details
contact_details = """
**Feel free to reach out to us:**
- [Yash J Bachwana](mailto:yash.bachwana@iitgn.ac.in)
(Lead Developer, IIT Gandhinagar)
- [Zeel B Patel](https://patel-zeel.github.io/)
(PhD Student, IIT Gandhinagar)
- [Nipun Batra](https://nipunbatra.github.io/)
(Faculty, IIT Gandhinagar)
"""
# Display contact details with message
st.sidebar.markdown("<hr>", unsafe_allow_html=True)
st.sidebar.markdown(contact_details, unsafe_allow_html=True)
st.markdown(
"""
<style>
.sidebar .sidebar-content {
position: sticky;
top: 0;
height: 100vh;
overflow-y: auto;
overflow-x: hidden;
}
</style>
""",
unsafe_allow_html=True
)