import streamlit as st
import os
import json
import pandas as pd
import random
from os.path import join
from datetime import datetime
from src import preprocess_and_load_df, load_agent, ask_agent, decorate_with_code, show_response, get_from_user, load_smart_df, ask_question
from dotenv import load_dotenv
from langchain_groq.chat_models import ChatGroq
from langchain_google_genai import GoogleGenerativeAI
from streamlit_feedback import streamlit_feedback
from huggingface_hub import HfApi
st.set_page_config(layout="wide")
# Load environment variables : Groq and Hugging Face API keys
load_dotenv()
Groq_Token = os.environ["GROQ_API_KEY"]
hf_token = os.environ["HF_TOKEN"]
gemini_token = os.environ["GEMINI_TOKEN"]
models = {"llama3":"llama3-70b-8192","mixtral": "mixtral-8x7b-32768", "llama2": "llama2-70b-4096", "gemma": "gemma-7b-it", "gemini-pro": "gemini-pro"}
self_path = os.path.dirname(os.path.abspath(__file__))
# Using HTML and CSS to center the title
st.write(
"""
""",
unsafe_allow_html=True,
)
# Displaying the centered title
st.markdown("
VayuBuddy makes pollution monitoring easier by bridging the gap between users and datasets.
No coding required—just meaningful insights at your fingertips!
", unsafe_allow_html=True)
# Center-aligned instruction text with bold formatting
st.markdown("Choose a query from Select a prompt or type a query in the chat box, select a LLM (Large Language Model), and press enter to generate a response.
", unsafe_allow_html=True)
# os.environ["PANDASAI_API_KEY"] = "$2a$10$gbmqKotzJOnqa7iYOun8eO50TxMD/6Zw1pLI2JEoqncwsNx4XeBS2"
# with open(join(self_path, "context1.txt")) as f:
# context = f.read().strip()
# agent = load_agent(join(self_path, "app_trial_1.csv"), context)
# df = preprocess_and_load_df(join(self_path, "Data.csv"))
# inference_server = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2"
# inference_server = "https://api-inference.huggingface.co/models/codellama/CodeLlama-13b-hf"
# inference_server = "https://api-inference.huggingface.co/models/pandasai/bamboo-llm"
image_path = "IITGN_Logo.png"
# Display images and text in three columns with specified ratios
col1, col2, col3 = st.sidebar.columns((1.0, 2, 1.0))
with col2:
st.image(image_path, use_column_width=True)
st.markdown("VayuBuddy
", unsafe_allow_html=True)
model_name = st.sidebar.selectbox("Select LLM:", ["llama3","mixtral", "gemma", "gemini-pro"])
questions = ['Custom Prompt']
with open(join(self_path, "questions.txt")) as f:
questions += f.read().split("\n")
waiting_lines = ("Thinking...", "Just a moment...", "Let me think...", "Working on it...", "Processing...", "Hold on...", "One moment...", "On it...")
# agent = load_agent(df, context="", inference_server=inference_server, name=model_name)
# Initialize chat history
if "responses" not in st.session_state:
st.session_state.responses = []
### Old code for feedback
# def push_to_dataset(feedback, comments,output,code,error):
# # Load existing dataset or create a new one if it doesn't exist
# try:
# ds = load_dataset("YashB1/Feedbacks_eoc", split="evaluation")
# except FileNotFoundError:
# # If dataset doesn't exist, create a new one
# ds = Dataset.from_dict({"feedback": [], "comments": [], "error": [], "output": [], "code": []})
# # Add new feedback to the dataset
# new_data = {"feedback": [feedback], "comments": [comments], "error": [error], "output": [output], "code": [code]} # Convert feedback and comments to lists
# new_data = Dataset.from_dict(new_data)
# ds = concatenate_datasets([ds, new_data])
# # Push the updated dataset to Hugging Face Hub
# ds.push_to_hub("YashB1/Feedbacks_eoc", split="evaluation")
def upload_feedback():
print("Uploading feedback")
data = {
"feedback": feedback['score'],
"comment": feedback['text'], "error": error, "output": output, "prompt": last_prompt, "code": code}
# generate a random file name based on current time-stamp: YYYY-MM-DD_HH-MM-SS
random_folder_name = str(datetime.now()).replace(" ", "_").replace(":", "-").replace(".", "-")
print("Random folder:", random_folder_name)
save_path = f"/tmp/vayubuddy_feedback.md"
path_in_repo = f"data/{random_folder_name}/feedback.md"
with open(save_path, "w") as f:
template = f"""Prompt: {last_prompt}
Output: {output}
Code:
```py
{code}
```
Error: {error}
Feedback: {feedback['score']}
Comments: {feedback['text']}
"""
print(template, file=f)
api = HfApi(token=hf_token)
api.upload_file(
path_or_fileobj=save_path,
path_in_repo=path_in_repo,
repo_id="SustainabilityLabIITGN/VayuBuddy_Feedback",
repo_type="dataset",
)
if status['is_image']:
api.upload_file(
path_or_fileobj=output,
path_in_repo=f"data/{random_folder_name}/plot.png",
repo_id="SustainabilityLabIITGN/VayuBuddy_Feedback",
repo_type="dataset",
)
print("Feedback uploaded successfully!")
# Display chat responses from history on app rerun
print("#"*10)
for response_id, response in enumerate(st.session_state.responses):
status = show_response(st, response)
if response["role"] == "assistant":
feedback_key = f"feedback_{int(response_id/2)}"
print("response_id", response_id, "feedback_key", feedback_key)
error = response["error"]
output = response["content"]
last_prompt = response["last_prompt"]
code = response["gen_code"]
if "feedback" in st.session_state.responses[response_id]:
st.write("Feedback:", st.session_state.responses[response_id]["feedback"])
else:
## !!! This does on work on Safari !!!
# feedback = streamlit_feedback(feedback_type="thumbs",
# optional_text_label="[Optional] Please provide extra information", on_submit=upload_feedback, key=feedback_key)
# Display thumbs up/down buttons for feedback
thumbs = st.radio("We would appreciate your feedback!", ('👍', '👎'), index=None, key=feedback_key)
if thumbs:
# Text input for comments
comments = st.text_area("[Optional] Please provide extra information", key=feedback_key+"_comments")
feedback = {"score": thumbs, "text": comments}
if st.button("Submit", on_click=upload_feedback, key=feedback_key+"_submit"):
st.session_state.responses[response_id]["feedback"] = feedback
st.success("Feedback uploaded successfully!")
print("#"*10)
show = True
prompt = st.sidebar.selectbox("Select a Prompt:", questions, key="prompt_key")
if prompt == 'Custom Prompt':
show = False
# React to user input
prompt = st.chat_input("Ask me anything about air quality!", key=1000)
if prompt :
show = True
else:
# placeholder for chat input
st.chat_input("Select 'Select a Prompt' -> 'Custom Prompt' in the sidebar to ask your own questions.", key=1000, disabled=True)
if "last_prompt" in st.session_state:
last_prompt = st.session_state["last_prompt"]
last_model_name = st.session_state["last_model_name"]
if (prompt == last_prompt) and (model_name == last_model_name):
show = False
if prompt:
st.sidebar.info("Select 'Custom Prompt' to ask your own questions.")
if show:
# Add user input to chat history
user_response = get_from_user(prompt)
st.session_state.responses.append(user_response)
# select random waiting line
with st.spinner(random.choice(waiting_lines)):
ran = False
for i in range(1):
print(f"Attempt {i+1}")
if model_name == "gemini-pro":
llm = GoogleGenerativeAI(model=models[model_name], google_api_key=os.getenv("GEMINI_TOKEN"), temperature=0)
else:
llm = ChatGroq(model=models[model_name], api_key=os.getenv("GROQ_API"), temperature=0)
df_check = pd.read_csv("Data.csv")
df_check["Timestamp"] = pd.to_datetime(df_check["Timestamp"])
df_check = df_check.head(5)
new_line = "\n"
parameters = {"font.size": 12,"figure.dpi": 600}
template = f"""```python
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams.update({parameters})
df = pd.read_csv("Data.csv")
df["Timestamp"] = pd.to_datetime(df["Timestamp"])
import geopandas as gpd
india = gpd.read_file("https://gist.githubusercontent.com/jbrobst/56c13bbbf9d97d187fea01ca62ea5112/raw/e388c4cae20aa53cb5090210a42ebb9b765c0a36/india_states.geojson")
india.loc[india['ST_NM'].isin(['Ladakh', 'Jammu & Kashmir']), 'ST_NM'] = 'Jammu and Kashmir'
import uuid
# df.dtypes
{new_line.join(map(lambda x: '# '+x, str(df_check.dtypes).split(new_line)))}
{new_line.join(['# '+line for line in prompt.strip().split(new_line)])}
"""
query = f"""I have a pandas dataframe data of PM2.5 and PM10.
* The columns are 'Timestamp', 'station', 'PM2.5', 'PM10', 'address', 'city', 'latitude', 'longitude',and 'state'.
* Frequency of data is daily.
* `pollution` generally means `PM2.5`.
* You already have df, so don't read the csv file
* Don't print anything, but save result in a variable `answer` and make it global.
* Unless explicitly mentioned, don't consider the result as a plot.
* PM2.5 guidelines: India: 60, WHO: 15.
* PM10 guidelines: India: 100, WHO: 50.
* If result is a plot, show the India and WHO guidelines in the plot.
* If result is a plot make it in tight layout, save it and save path in `answer`. Example: `answer='plot.png'`. Use uuid to save the plot.
* If result is a plot, rotate x-axis tick labels by 45 degrees,
* If result is not a plot, save it as a string in `answer`. Example: `answer='The city is Mumbai'`
* I have a geopandas.geodataframe india containining the coordinates required to plot Indian Map with states.
* If the query asks you to plot on India Map, use that geodataframe to plot and then add more points as per the requirements using the similar code as follows : v = ax.scatter(df['longitude'], df['latitude']). If the colorbar is required, use the following code : plt.colorbar(v)
* If the query asks you to plot on India Map plot the India Map in Beige color
* Whenever you do any sort of aggregation, report the corresponding standard deviation, standard error and the number of data points for that aggregation.
* Whenever you're reporting a floating point number, round it to 2 decimal places.
* Always report the unit of the data. Example: `The average PM2.5 is 45.67 µg/m³`
Complete the following code.
{template}
"""
answer = None
code = None
error = None
try:
if model_name == "gemini-pro":
answer = llm.invoke(query)
else:
answer = llm.invoke(query).content
code = f"""
{template.split("```python")[1].split("```")[0]}
{answer.split("```python")[1].split("```")[0]}
"""
# update variable `answer` when code is executed
exec(code)
ran = True
except Exception as e:
error = e
if code is not None:
answer = f"Error executing the code...\n\n{e}"
if type(answer) != str:
answer = f"!!!Faced an error while working on your query. Please try again!!!"
response = {"role": "assistant", "content": answer, "gen_code": code, "ex_code": code, "last_prompt": prompt, "error": error}
# Get response from agent
# response = ask_question(model_name=model_name, question=prompt)
# response = ask_agent(agent, prompt)
if ran:
break
# Append agent response to chat history
st.session_state.responses.append(response)
st.session_state['last_prompt'] = prompt
st.session_state['last_model_name'] = model_name
st.rerun()
# contact details
contact_details = """
**Feel free to reach out to us:**
- [Yash J Bachwana](mailto:yash.bachwana@iitgn.ac.in)
(Lead Developer, IIT Gandhinagar)
- [Zeel B Patel](https://patel-zeel.github.io/)
(PhD Student, IIT Gandhinagar)
- [Nipun Batra](https://nipunbatra.github.io/)
(Faculty, IIT Gandhinagar)
"""
# Display contact details with message
st.sidebar.markdown("
", unsafe_allow_html=True)
st.sidebar.markdown(contact_details, unsafe_allow_html=True)
st.markdown(
"""
""",
unsafe_allow_html=True
)