Surn commited on
Commit
9259c5f
·
1 Parent(s): e9e239c

Add Permalink

Browse files

Switch Trellis model location to jetx

Upload New LUTS

LUT/Aqua.cube ADDED
The diff for this file is too large to render. See raw diff
 
LUT/CineTravel.cube ADDED
The diff for this file is too large to render. See raw diff
 
LUT/Creative_Blue.cube ADDED
The diff for this file is too large to render. See raw diff
 
LUT/plasma.cube ADDED
@@ -0,0 +1,258 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ TITLE "Colormap plasma"
2
+ LUT_1D_SIZE 256
3
+ 0.0503830 0.0298030 0.5279750
4
+ 0.0635360 0.0284260 0.5331240
5
+ 0.0753530 0.0272060 0.5380070
6
+ 0.0862220 0.0261250 0.5426580
7
+ 0.0963790 0.0251650 0.5471030
8
+ 0.1059800 0.0243090 0.5513680
9
+ 0.1151240 0.0235560 0.5554680
10
+ 0.1239030 0.0228780 0.5594230
11
+ 0.1323810 0.0222580 0.5632500
12
+ 0.1406030 0.0216870 0.5669590
13
+ 0.1486070 0.0211540 0.5705620
14
+ 0.1564210 0.0206510 0.5740650
15
+ 0.1640700 0.0201710 0.5774780
16
+ 0.1715740 0.0197060 0.5808060
17
+ 0.1789500 0.0192520 0.5840540
18
+ 0.1862130 0.0188030 0.5872280
19
+ 0.1933740 0.0183540 0.5903300
20
+ 0.2004450 0.0179020 0.5933640
21
+ 0.2074350 0.0174420 0.5963330
22
+ 0.2143500 0.0169730 0.5992390
23
+ 0.2211970 0.0164970 0.6020830
24
+ 0.2279830 0.0160070 0.6048670
25
+ 0.2347150 0.0155020 0.6075920
26
+ 0.2413960 0.0149790 0.6102590
27
+ 0.2480320 0.0144390 0.6128680
28
+ 0.2546270 0.0138820 0.6154190
29
+ 0.2611830 0.0133080 0.6179110
30
+ 0.2677030 0.0127160 0.6203460
31
+ 0.2741910 0.0121090 0.6227220
32
+ 0.2806480 0.0114880 0.6250380
33
+ 0.2870760 0.0108550 0.6272950
34
+ 0.2934780 0.0102130 0.6294900
35
+ 0.2998550 0.0095610 0.6316240
36
+ 0.3062100 0.0089020 0.6336940
37
+ 0.3125430 0.0082390 0.6357000
38
+ 0.3188560 0.0075760 0.6376400
39
+ 0.3251500 0.0069150 0.6395120
40
+ 0.3314260 0.0062610 0.6413160
41
+ 0.3376830 0.0056180 0.6430490
42
+ 0.3439250 0.0049910 0.6447100
43
+ 0.3501500 0.0043820 0.6462980
44
+ 0.3563590 0.0037980 0.6478100
45
+ 0.3625530 0.0032430 0.6492450
46
+ 0.3687330 0.0027240 0.6506010
47
+ 0.3748970 0.0022450 0.6518760
48
+ 0.3810470 0.0018140 0.6530680
49
+ 0.3871830 0.0014340 0.6541770
50
+ 0.3933040 0.0011140 0.6551990
51
+ 0.3994110 0.0008590 0.6561330
52
+ 0.4055030 0.0006780 0.6569770
53
+ 0.4115800 0.0005770 0.6577300
54
+ 0.4176420 0.0005640 0.6583900
55
+ 0.4236890 0.0006460 0.6589560
56
+ 0.4297190 0.0008310 0.6594250
57
+ 0.4357340 0.0011270 0.6597970
58
+ 0.4417320 0.0015400 0.6600690
59
+ 0.4477140 0.0020800 0.6602400
60
+ 0.4536770 0.0027550 0.6603100
61
+ 0.4596230 0.0035740 0.6602770
62
+ 0.4655500 0.0045450 0.6601390
63
+ 0.4714570 0.0056780 0.6598970
64
+ 0.4773440 0.0069800 0.6595490
65
+ 0.4832100 0.0084600 0.6590950
66
+ 0.4890550 0.0101270 0.6585340
67
+ 0.4948770 0.0119900 0.6578650
68
+ 0.5006780 0.0140550 0.6570880
69
+ 0.5064540 0.0163330 0.6562020
70
+ 0.5122060 0.0188330 0.6552090
71
+ 0.5179330 0.0215630 0.6541090
72
+ 0.5236330 0.0245320 0.6529010
73
+ 0.5293060 0.0277470 0.6515860
74
+ 0.5349520 0.0312170 0.6501650
75
+ 0.5405700 0.0349500 0.6486400
76
+ 0.5461570 0.0389540 0.6470100
77
+ 0.5517150 0.0431360 0.6452770
78
+ 0.5572430 0.0473310 0.6434430
79
+ 0.5627380 0.0515450 0.6415090
80
+ 0.5682010 0.0557780 0.6394770
81
+ 0.5736320 0.0600280 0.6373490
82
+ 0.5790290 0.0642960 0.6351260
83
+ 0.5843910 0.0685790 0.6328120
84
+ 0.5897190 0.0728780 0.6304080
85
+ 0.5950110 0.0771900 0.6279170
86
+ 0.6002660 0.0815160 0.6253420
87
+ 0.6054850 0.0858540 0.6226860
88
+ 0.6106670 0.0902040 0.6199510
89
+ 0.6158120 0.0945640 0.6171400
90
+ 0.6209190 0.0989340 0.6142570
91
+ 0.6259870 0.1033120 0.6113050
92
+ 0.6310170 0.1076990 0.6082870
93
+ 0.6360080 0.1120920 0.6052050
94
+ 0.6409590 0.1164920 0.6020650
95
+ 0.6458720 0.1208980 0.5988670
96
+ 0.6507460 0.1253090 0.5956170
97
+ 0.6555800 0.1297250 0.5923170
98
+ 0.6603740 0.1341440 0.5889710
99
+ 0.6651290 0.1385660 0.5855820
100
+ 0.6698450 0.1429920 0.5821540
101
+ 0.6745220 0.1474190 0.5786880
102
+ 0.6791600 0.1518480 0.5751890
103
+ 0.6837580 0.1562780 0.5716600
104
+ 0.6883180 0.1607090 0.5681030
105
+ 0.6928400 0.1651410 0.5645220
106
+ 0.6973240 0.1695730 0.5609190
107
+ 0.7017690 0.1740050 0.5572960
108
+ 0.7061780 0.1784370 0.5536570
109
+ 0.7105490 0.1828680 0.5500040
110
+ 0.7148830 0.1872990 0.5463380
111
+ 0.7191810 0.1917290 0.5426630
112
+ 0.7234440 0.1961580 0.5389810
113
+ 0.7276700 0.2005860 0.5352930
114
+ 0.7318620 0.2050130 0.5316010
115
+ 0.7360190 0.2094390 0.5279080
116
+ 0.7401430 0.2138640 0.5242160
117
+ 0.7442320 0.2182880 0.5205240
118
+ 0.7482890 0.2227110 0.5168340
119
+ 0.7523120 0.2271330 0.5131490
120
+ 0.7563040 0.2315550 0.5094680
121
+ 0.7602640 0.2359760 0.5057940
122
+ 0.7641930 0.2403960 0.5021260
123
+ 0.7680900 0.2448170 0.4984650
124
+ 0.7719580 0.2492370 0.4948130
125
+ 0.7757960 0.2536580 0.4911710
126
+ 0.7796040 0.2580780 0.4875390
127
+ 0.7833830 0.2625000 0.4839180
128
+ 0.7871330 0.2669220 0.4803070
129
+ 0.7908550 0.2713450 0.4767060
130
+ 0.7945490 0.2757700 0.4731170
131
+ 0.7982160 0.2801970 0.4695380
132
+ 0.8018550 0.2846260 0.4659710
133
+ 0.8054670 0.2890570 0.4624150
134
+ 0.8090520 0.2934910 0.4588700
135
+ 0.8126120 0.2979280 0.4553380
136
+ 0.8161440 0.3023680 0.4518160
137
+ 0.8196510 0.3068120 0.4483060
138
+ 0.8231320 0.3112610 0.4448060
139
+ 0.8265880 0.3157140 0.4413160
140
+ 0.8300180 0.3201720 0.4378360
141
+ 0.8334220 0.3246350 0.4343660
142
+ 0.8368010 0.3291050 0.4309050
143
+ 0.8401550 0.3335800 0.4274550
144
+ 0.8434840 0.3380620 0.4240130
145
+ 0.8467880 0.3425510 0.4205790
146
+ 0.8500660 0.3470480 0.4171530
147
+ 0.8533190 0.3515530 0.4137340
148
+ 0.8565470 0.3560660 0.4103220
149
+ 0.8597500 0.3605880 0.4069170
150
+ 0.8629270 0.3651190 0.4035190
151
+ 0.8660780 0.3696600 0.4001260
152
+ 0.8692030 0.3742120 0.3967380
153
+ 0.8723030 0.3787740 0.3933550
154
+ 0.8753760 0.3833470 0.3899760
155
+ 0.8784230 0.3879320 0.3866000
156
+ 0.8814430 0.3925290 0.3832290
157
+ 0.8844360 0.3971390 0.3798600
158
+ 0.8874020 0.4017620 0.3764940
159
+ 0.8903400 0.4063980 0.3731300
160
+ 0.8932500 0.4110480 0.3697680
161
+ 0.8961310 0.4157120 0.3664070
162
+ 0.8989840 0.4203920 0.3630470
163
+ 0.9018070 0.4250870 0.3596880
164
+ 0.9046010 0.4297970 0.3563290
165
+ 0.9073650 0.4345240 0.3529700
166
+ 0.9100980 0.4392680 0.3496100
167
+ 0.9128000 0.4440290 0.3462510
168
+ 0.9154710 0.4488070 0.3428900
169
+ 0.9181090 0.4536030 0.3395290
170
+ 0.9207140 0.4584170 0.3361660
171
+ 0.9232870 0.4632510 0.3328010
172
+ 0.9258250 0.4681030 0.3294350
173
+ 0.9283290 0.4729750 0.3260670
174
+ 0.9307980 0.4778670 0.3226970
175
+ 0.9332320 0.4827800 0.3193250
176
+ 0.9356300 0.4877120 0.3159520
177
+ 0.9379900 0.4926670 0.3125750
178
+ 0.9403130 0.4976420 0.3091970
179
+ 0.9425980 0.5026390 0.3058160
180
+ 0.9448440 0.5076580 0.3024330
181
+ 0.9470510 0.5126990 0.2990490
182
+ 0.9492170 0.5177630 0.2956620
183
+ 0.9513440 0.5228500 0.2922750
184
+ 0.9534280 0.5279600 0.2888830
185
+ 0.9554700 0.5330930 0.2854900
186
+ 0.9574690 0.5382500 0.2820960
187
+ 0.9594240 0.5434310 0.2787010
188
+ 0.9613360 0.5486360 0.2753050
189
+ 0.9632030 0.5538650 0.2719090
190
+ 0.9650240 0.5591180 0.2685130
191
+ 0.9667980 0.5643960 0.2651180
192
+ 0.9685260 0.5697000 0.2617210
193
+ 0.9702050 0.5750280 0.2583250
194
+ 0.9718350 0.5803820 0.2549310
195
+ 0.9734160 0.5857610 0.2515400
196
+ 0.9749470 0.5911650 0.2481510
197
+ 0.9764280 0.5965950 0.2447670
198
+ 0.9778560 0.6020510 0.2413870
199
+ 0.9792330 0.6075320 0.2380130
200
+ 0.9805560 0.6130390 0.2346460
201
+ 0.9818260 0.6185720 0.2312870
202
+ 0.9830410 0.6241310 0.2279370
203
+ 0.9841990 0.6297180 0.2245950
204
+ 0.9853010 0.6353300 0.2212650
205
+ 0.9863450 0.6409690 0.2179480
206
+ 0.9873320 0.6466330 0.2146480
207
+ 0.9882600 0.6523250 0.2113640
208
+ 0.9891280 0.6580430 0.2081000
209
+ 0.9899350 0.6637870 0.2048590
210
+ 0.9906810 0.6695580 0.2016420
211
+ 0.9913650 0.6753550 0.1984530
212
+ 0.9919850 0.6811790 0.1952950
213
+ 0.9925410 0.6870300 0.1921700
214
+ 0.9930320 0.6929070 0.1890840
215
+ 0.9934560 0.6988100 0.1860410
216
+ 0.9938140 0.7047410 0.1830430
217
+ 0.9941030 0.7106980 0.1800970
218
+ 0.9943240 0.7166810 0.1772080
219
+ 0.9944740 0.7226910 0.1743810
220
+ 0.9945530 0.7287280 0.1716220
221
+ 0.9945610 0.7347910 0.1689380
222
+ 0.9944950 0.7408800 0.1663350
223
+ 0.9943550 0.7469950 0.1638210
224
+ 0.9941410 0.7531370 0.1614040
225
+ 0.9938510 0.7593040 0.1590920
226
+ 0.9934820 0.7654990 0.1568910
227
+ 0.9930330 0.7717200 0.1548080
228
+ 0.9925050 0.7779670 0.1528550
229
+ 0.9918970 0.7842390 0.1510420
230
+ 0.9912090 0.7905370 0.1493770
231
+ 0.9904390 0.7968590 0.1478700
232
+ 0.9895870 0.8032050 0.1465290
233
+ 0.9886480 0.8095790 0.1453570
234
+ 0.9876210 0.8159780 0.1443630
235
+ 0.9865090 0.8224010 0.1435570
236
+ 0.9853140 0.8288460 0.1429450
237
+ 0.9840310 0.8353150 0.1425280
238
+ 0.9826530 0.8418120 0.1423030
239
+ 0.9811900 0.8483290 0.1422790
240
+ 0.9796440 0.8548660 0.1424530
241
+ 0.9779950 0.8614320 0.1428080
242
+ 0.9762650 0.8680160 0.1433510
243
+ 0.9744430 0.8746220 0.1440610
244
+ 0.9725300 0.8812500 0.1449230
245
+ 0.9705330 0.8878960 0.1459190
246
+ 0.9684430 0.8945640 0.1470140
247
+ 0.9662710 0.9012490 0.1481800
248
+ 0.9640210 0.9079500 0.1493700
249
+ 0.9616810 0.9146720 0.1505200
250
+ 0.9592760 0.9214070 0.1515660
251
+ 0.9568080 0.9281520 0.1524090
252
+ 0.9542870 0.9349080 0.1529210
253
+ 0.9517260 0.9416710 0.1529250
254
+ 0.9491510 0.9484350 0.1521780
255
+ 0.9466020 0.9551900 0.1503280
256
+ 0.9441520 0.9619160 0.1468610
257
+ 0.9418960 0.9685900 0.1409560
258
+ 0.9400150 0.9751580 0.1313260
LUT/prism.cube ADDED
@@ -0,0 +1,258 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ TITLE "Colormap prism"
2
+ LUT_1D_SIZE 256
3
+ 1.0000000 0.0000000 0.0000000
4
+ 1.0000000 0.0000000 0.0000000
5
+ 1.0000000 0.1296454 0.0000000
6
+ 1.0000000 0.3202983 0.0000000
7
+ 1.0000000 0.5115908 0.0000000
8
+ 1.0000000 0.6909103 0.0000000
9
+ 1.0000000 0.8464335 0.0000000
10
+ 1.0000000 0.9679059 0.0000000
11
+ 0.8889842 1.0000000 0.0000000
12
+ 0.6990986 1.0000000 0.0000000
13
+ 0.5072944 1.0000000 0.0000000
14
+ 0.3262181 0.9965688 0.0000000
15
+ 0.1678088 0.8870494 0.0000000
16
+ 0.0425111 0.7408013 0.2247246
17
+ 0.0000000 0.5674673 0.4915249
18
+ 0.0000000 0.3784761 0.7259170
19
+ 0.0000000 0.1862886 0.9124462
20
+ 0.0000000 0.0035767 1.0000000
21
+ 0.1001458 0.0000000 1.0000000
22
+ 0.2431037 0.0000000 1.0000000
23
+ 0.4142086 0.0000000 0.9964608
24
+ 0.6021789 0.0000000 0.8449673
25
+ 0.7946210 0.0000000 0.6377615
26
+ 0.9788463 0.0000000 0.3885054
27
+ 1.0000000 0.0000000 0.1136334
28
+ 1.0000000 0.0000000 0.0000000
29
+ 1.0000000 0.0560557 0.0000000
30
+ 1.0000000 0.2428793 0.0000000
31
+ 1.0000000 0.4354472 0.0000000
32
+ 1.0000000 0.6210625 0.0000000
33
+ 1.0000000 0.7874869 0.0000000
34
+ 1.0000000 0.9237471 0.0000000
35
+ 0.9619139 1.0000000 0.0000000
36
+ 0.7763620 1.0000000 0.0000000
37
+ 0.5837971 1.0000000 0.0000000
38
+ 0.3969160 1.0000000 0.0000000
39
+ 0.2280405 0.9359470 0.0000000
40
+ 0.0883053 0.8034250 0.1122854
41
+ 0.0000000 0.6396881 0.3872372
42
+ 0.0000000 0.4555321 0.6366568
43
+ 0.0000000 0.2630992 0.8440989
44
+ 0.0000000 0.0750774 0.9958860
45
+ 0.0528227 0.0000000 1.0000000
46
+ 0.1816855 0.0000000 1.0000000
47
+ 0.3427450 0.0000000 1.0000000
48
+ 0.5253819 0.0000000 0.9132024
49
+ 0.7175540 0.0000000 0.7269346
50
+ 0.9065906 0.0000000 0.4927369
51
+ 1.0000000 0.0000000 0.2260510
52
+ 1.0000000 0.0000000 0.0000000
53
+ 1.0000000 0.0000000 0.0000000
54
+ 1.0000000 0.1663926 0.0000000
55
+ 1.0000000 0.3581753 0.0000000
56
+ 1.0000000 0.5481003 0.0000000
57
+ 1.0000000 0.7236451 0.0000000
58
+ 1.0000000 0.8732351 0.0000000
59
+ 1.0000000 0.9870073 0.0000000
60
+ 0.8524872 1.0000000 0.0000000
61
+ 0.6612222 1.0000000 0.0000000
62
+ 0.4705360 1.0000000 0.0000000
63
+ 0.2930013 0.9783610 0.0000000
64
+ 0.1403237 0.8609830 0.0000000
65
+ 0.0225699 0.7085951 0.2788060
66
+ 0.0000000 0.5312448 0.5405844
67
+ 0.0000000 0.3406256 0.7667197
68
+ 0.0000000 0.1493058 0.9423019
69
+ 0.0121034 0.0000000 1.0000000
70
+ 0.1254924 0.0000000 1.0000000
71
+ 0.2747832 0.0000000 1.0000000
72
+ 0.4501322 0.0000000 0.9716662
73
+ 0.6399781 0.0000000 0.8083295
74
+ 0.8318034 0.0000000 0.5916961
75
+ 1.0000000 0.0000000 0.3360498
76
+ 1.0000000 0.0000000 0.0582462
77
+ 1.0000000 0.0000000 0.0000000
78
+ 1.0000000 0.0916564 0.0000000
79
+ 1.0000000 0.2806019 0.0000000
80
+ 1.0000000 0.4728044 0.0000000
81
+ 1.0000000 0.6555912 0.0000000
82
+ 1.0000000 0.8169104 0.0000000
83
+ 1.0000000 0.9461255 0.0000000
84
+ 0.9266598 1.0000000 0.0000000
85
+ 0.7387412 1.0000000 0.0000000
86
+ 0.5462902 1.0000000 0.0000000
87
+ 0.3619960 1.0000000 0.0000000
88
+ 0.1980097 0.9128595 0.0000000
89
+ 0.0651438 0.7734512 0.1673915
90
+ 0.0000000 0.6048043 0.4387275
91
+ 0.0000000 0.4180383 0.6811364
92
+ 0.0000000 0.2254677 0.8786350
93
+ 0.0000000 0.0397893 1.0000000
94
+ 0.0751256 0.0000000 1.0000000
95
+ 0.2110502 0.0000000 1.0000000
96
+ 0.3772352 0.0000000 1.0000000
97
+ 0.5627235 0.0000000 0.8810750
98
+ 0.7552849 0.0000000 0.6843241
99
+ 0.9422232 0.0000000 0.4424528
100
+ 1.0000000 0.0000000 0.1714086
101
+ 1.0000000 0.0000000 0.0000000
102
+ 1.0000000 0.0194706 0.0000000
103
+ 1.0000000 0.2035571 0.0000000
104
+ 1.0000000 0.3959804 0.0000000
105
+ 1.0000000 0.5840534 0.0000000
106
+ 1.0000000 0.7553756 0.0000000
107
+ 1.0000000 0.8986510 0.0000000
108
+ 0.9980861 1.0000000 0.0000000
109
+ 0.8155247 1.0000000 0.0000000
110
+ 0.6233682 1.0000000 0.0000000
111
+ 0.4342864 1.0000000 0.0000000
112
+ 0.2607461 0.9584992 0.0000000
113
+ 0.1141897 0.8335622 0.0541859
114
+ 0.0042803 0.6754233 0.3321763
115
+ 0.0000000 0.4945091 0.5882648
116
+ 0.0000000 0.3027481 0.8055665
117
+ 0.0000000 0.1127839 0.9697538
118
+ 0.0311241 0.0000000 1.0000000
119
+ 0.1522280 0.0000000 1.0000000
120
+ 0.3074708 0.0000000 1.0000000
121
+ 0.4866167 0.0000000 0.9443930
122
+ 0.6778538 0.0000000 0.7696297
123
+ 0.8685731 0.0000000 0.5441214
124
+ 1.0000000 0.0000000 0.2827369
125
+ 1.0000000 0.0000000 0.0027104
126
+ 1.0000000 0.0000000 0.0000000
127
+ 1.0000000 0.1278652 0.0000000
128
+ 1.0000000 0.3184505 0.0000000
129
+ 1.0000000 0.5097973 0.0000000
130
+ 1.0000000 0.6892893 0.0000000
131
+ 1.0000000 0.8450918 0.0000000
132
+ 1.0000000 0.9669321 0.0000000
133
+ 0.8907510 1.0000000 0.0000000
134
+ 0.7009451 1.0000000 0.0000000
135
+ 0.5090989 1.0000000 0.0000000
136
+ 0.3278616 0.9974139 0.0000000
137
+ 0.1691829 0.8882851 0.0000000
138
+ 0.0435252 0.7423462 0.2220707
139
+ 0.0000000 0.5692195 0.4890987
140
+ 0.0000000 0.3803201 0.7238784
141
+ 0.0000000 0.1881028 0.9109297
142
+ 0.0000000 0.0052414 1.0000000
143
+ 0.0989461 0.0000000 1.0000000
144
+ 0.2415855 0.0000000 1.0000000
145
+ 0.4124722 0.0000000 0.9976057
146
+ 0.6003387 0.0000000 0.8467001
147
+ 0.7927983 0.0000000 0.6399679
148
+ 0.9771613 0.0000000 0.3910399
149
+ 1.0000000 0.0000000 0.1163290
150
+ 1.0000000 0.0000000 0.0000000
151
+ 1.0000000 0.0543362 0.0000000
152
+ 1.0000000 0.2410441 0.0000000
153
+ 1.0000000 0.4336173 0.0000000
154
+ 1.0000000 0.6193585 0.0000000
155
+ 1.0000000 0.7860211 0.0000000
156
+ 1.0000000 0.9226163 0.0000000
157
+ 0.9636153 1.0000000 0.0000000
158
+ 0.7781910 1.0000000 0.0000000
159
+ 0.5856331 1.0000000 0.0000000
160
+ 0.3986380 1.0000000 0.0000000
161
+ 0.2295349 0.9370342 0.0000000
162
+ 0.0894736 0.8048569 0.1095888
163
+ 0.0000000 0.6413702 0.3846992
164
+ 0.0000000 0.4573536 0.6344446
165
+ 0.0000000 0.2649400 0.8423584
166
+ 0.0000000 0.0768161 0.9947320
167
+ 0.0517745 0.0000000 1.0000000
168
+ 0.1802844 0.0000000 1.0000000
169
+ 0.3410832 0.0000000 1.0000000
170
+ 0.5235690 0.0000000 0.9147107
171
+ 0.7157095 0.0000000 0.7289666
172
+ 0.9048363 0.0000000 0.4951587
173
+ 1.0000000 0.0000000 0.2287029
174
+ 1.0000000 0.0000000 0.0000000
175
+ 1.0000000 0.0000000 0.0000000
176
+ 1.0000000 0.1645896 0.0000000
177
+ 1.0000000 0.3563285 0.0000000
178
+ 1.0000000 0.5463315 0.0000000
179
+ 1.0000000 0.7220709 0.0000000
180
+ 1.0000000 0.8719593 0.0000000
181
+ 1.0000000 0.9861140 0.0000000
182
+ 0.8542791 1.0000000 0.0000000
183
+ 0.6630701 1.0000000 0.0000000
184
+ 0.4723180 1.0000000 0.0000000
185
+ 0.2946000 0.9792879 0.0000000
186
+ 0.1416336 0.8622866 0.0000000
187
+ 0.0235047 0.7101893 0.2761833
188
+ 0.0000000 0.5330245 0.5382222
189
+ 0.0000000 0.3424734 0.7647738
190
+ 0.0000000 0.1510999 0.9409007
191
+ 0.0112181 0.0000000 1.0000000
192
+ 0.1242232 0.0000000 1.0000000
193
+ 0.2732138 0.0000000 1.0000000
194
+ 0.4483661 0.0000000 0.9729337
195
+ 0.6381317 0.0000000 0.8101653
196
+ 0.8299985 0.0000000 0.5939792
197
+ 1.0000000 0.0000000 0.3386296
198
+ 1.0000000 0.0000000 0.0609526
199
+ 1.0000000 0.0000000 0.0000000
200
+ 1.0000000 0.0899050 0.0000000
201
+ 1.0000000 0.2787581 0.0000000
202
+ 1.0000000 0.4709898 0.0000000
203
+ 1.0000000 0.6539254 0.0000000
204
+ 1.0000000 0.8155033 0.0000000
205
+ 1.0000000 0.9450698 0.0000000
206
+ 0.9283955 1.0000000 0.0000000
207
+ 0.7405812 1.0000000 0.0000000
208
+ 0.5481133 1.0000000 0.0000000
209
+ 0.3636819 1.0000000 0.0000000
210
+ 0.1994473 0.9140207 0.0000000
211
+ 0.0662383 0.7749402 0.1647122
212
+ 0.0000000 0.6065229 0.4362407
213
+ 0.0000000 0.4198733 0.6790060
214
+ 0.0000000 0.2272979 0.8770016
215
+ 0.0000000 0.0414942 1.0000000
216
+ 0.0740020 0.0000000 1.0000000
217
+ 0.2095900 0.0000000 1.0000000
218
+ 0.3755347 0.0000000 1.0000000
219
+ 0.5608948 0.0000000 0.8826951
220
+ 0.7534487 0.0000000 0.6864441
221
+ 0.9405004 0.0000000 0.4449329
222
+ 1.0000000 0.0000000 0.1740854
223
+ 1.0000000 0.0000000 0.0000000
224
+ 1.0000000 0.0177894 0.0000000
225
+ 1.0000000 0.2017359 0.0000000
226
+ 1.0000000 0.3941394 0.0000000
227
+ 1.0000000 0.5823139 0.0000000
228
+ 1.0000000 0.7538523 0.0000000
229
+ 1.0000000 0.8974443 0.0000000
230
+ 0.9997469 1.0000000 0.0000000
231
+ 0.8173371 1.0000000 0.0000000
232
+ 0.6252128 1.0000000 0.0000000
233
+ 0.4360414 1.0000000 0.0000000
234
+ 0.2622960 0.9595057 0.0000000
235
+ 0.1154322 0.8349302 0.0514787
236
+ 0.0051334 0.6770625 0.3295914
237
+ 0.0000000 0.4963115 0.5859728
238
+ 0.0000000 0.3045949 0.8037184
239
+ 0.0000000 0.1145534 0.9684715
240
+ 0.0301581 0.0000000 1.0000000
241
+ 0.1508926 0.0000000 1.0000000
242
+ 0.3058541 0.0000000 1.0000000
243
+ 0.4848254 0.0000000 0.9457798
244
+ 0.6760059 0.0000000 0.7715638
245
+ 0.8667905 0.0000000 0.5464753
246
+ 1.0000000 0.0000000 0.2853554
247
+ 1.0000000 0.0000000 0.0054208
248
+ 1.0000000 0.0000000 0.0000000
249
+ 1.0000000 0.1260862 0.0000000
250
+ 1.0000000 0.3166027 0.0000000
251
+ 1.0000000 0.5080026 0.0000000
252
+ 1.0000000 0.6876660 0.0000000
253
+ 1.0000000 0.8437470 0.0000000
254
+ 1.0000000 0.9659545 0.0000000
255
+ 0.8925165 1.0000000 0.0000000
256
+ 0.7027915 1.0000000 0.0000000
257
+ 0.5109044 1.0000000 0.0000000
258
+ 0.3295071 0.9982549 0.0000000
app.py CHANGED
@@ -32,7 +32,11 @@ import logging
32
  import gc
33
 
34
  # Import functions from modules
35
- from utils.file_utils import cleanup_temp_files, get_file_parts
 
 
 
 
36
 
37
  from utils.color_utils import (
38
  hex_to_rgb,
@@ -800,7 +804,7 @@ def load_trellis_model():
800
  loaded = False
801
  if TRELLIS_PIPELINE == None:
802
  try:
803
- TRELLIS_PIPELINE = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
804
  TRELLIS_PIPELINE.cuda()
805
  # Preload with a dummy image to finalize initialization
806
  try:
@@ -1143,6 +1147,33 @@ def extract_gaussian(state: dict, req: gr.Request, progress=gr.Progress(track_tq
1143
  torch.cuda.ipc_collect()
1144
  return gaussian_path, gaussian_path
1145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1146
 
1147
  @spaces.GPU()
1148
  def getVersions():
@@ -1564,6 +1595,9 @@ with gr.Blocks(css_paths="style_20250314.css", title=title, theme='Surn/beeuty',
1564
  gr.Markdown("""
1565
  ### Files over 10 MB may not display in the 3D model viewer
1566
  """, elem_id="file_size_info", elem_classes="intro" )
 
 
 
1567
 
1568
  is_multiimage = gr.State(False)
1569
  output_buf = gr.State()
@@ -1811,6 +1845,10 @@ with gr.Blocks(css_paths="style_20250314.css", title=title, theme='Surn/beeuty',
1811
  ).then(
1812
  lambda: gr.Button(interactive=True),
1813
  outputs=[glb_file]
 
 
 
 
1814
  )
1815
 
1816
  extract_gaussian_btn.click(
@@ -1820,6 +1858,10 @@ with gr.Blocks(css_paths="style_20250314.css", title=title, theme='Surn/beeuty',
1820
  ).then(
1821
  lambda: gr.Button(interactive=True),
1822
  outputs=[gaussian_file]
 
 
 
 
1823
  )
1824
 
1825
  if __name__ == "__main__":
@@ -1854,7 +1896,7 @@ if __name__ == "__main__":
1854
  # image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
1855
  # depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large", ignore_mismatched_sizes=True)
1856
  if constants.IS_SHARED_SPACE:
1857
- TRELLIS_PIPELINE = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
1858
  TRELLIS_PIPELINE.to(device)
1859
  try:
1860
  TRELLIS_PIPELINE.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)), 512, True) # Preload rembg
 
32
  import gc
33
 
34
  # Import functions from modules
35
+ from utils.file_utils import (
36
+ cleanup_temp_files,
37
+ get_file_parts,
38
+ generate_permalink_from_urls
39
+ )
40
 
41
  from utils.color_utils import (
42
  hex_to_rgb,
 
804
  loaded = False
805
  if TRELLIS_PIPELINE == None:
806
  try:
807
+ TRELLIS_PIPELINE = TrellisImageTo3DPipeline.from_pretrained("jetx/TRELLIS-image-large")
808
  TRELLIS_PIPELINE.cuda()
809
  # Preload with a dummy image to finalize initialization
810
  try:
 
1147
  torch.cuda.ipc_collect()
1148
  return gaussian_path, gaussian_path
1149
 
1150
+ def update_permalink(glb, gaussian, depth_out, depth_src_file):
1151
+ """
1152
+ Determines the smaller file (glb or gaussian) in bytes and uses that file along with
1153
+ the depth output and the file used to generate the 3D model (depth_src_file) to
1154
+ create a permalink URL.
1155
+
1156
+ Parameters:
1157
+ glb (str): Path to the extracted GLB file.
1158
+ gaussian (str): Path to the extracted Gaussian file.
1159
+ depth_out (str): File path for the depth image.
1160
+ depth_src_file (str): File path for the image used to generate the 3D model.
1161
+
1162
+ Returns:
1163
+ tuple: A tuple of (update object for permalink_row, permalink URL string).
1164
+ """
1165
+ file_candidates = {}
1166
+ if glb and os.path.exists(glb):
1167
+ file_candidates[glb] = os.path.getsize(glb)
1168
+ if gaussian and os.path.exists(gaussian):
1169
+ file_candidates[gaussian] = os.path.getsize(gaussian)
1170
+
1171
+ if not file_candidates:
1172
+ return gr.update(visible=False), ""
1173
+
1174
+ smallest_file = min(file_candidates, key=file_candidates.get)
1175
+ permalink = generate_permalink_from_urls(smallest_file, depth_out, depth_src_file)
1176
+ return gr.update(visible=True), permalink
1177
 
1178
  @spaces.GPU()
1179
  def getVersions():
 
1595
  gr.Markdown("""
1596
  ### Files over 10 MB may not display in the 3D model viewer
1597
  """, elem_id="file_size_info", elem_classes="intro" )
1598
+ with gr.Row(visible=False) as permalink_row:
1599
+ permalink_button = gr.Button("View in Permalink", elem_classes="solid small centered", variant="secondary")
1600
+ permalink_text = gr.Textbox(label="Permalink", elem_classes="solid small centered")
1601
 
1602
  is_multiimage = gr.State(False)
1603
  output_buf = gr.State()
 
1845
  ).then(
1846
  lambda: gr.Button(interactive=True),
1847
  outputs=[glb_file]
1848
+ ).then(
1849
+ fn=update_permalink,
1850
+ inputs=[glb_file, gaussian_file, depth_output, ddd_image_path], # ddd_image_path now holds the source file
1851
+ outputs=[permalink_row, permalink_text]
1852
  )
1853
 
1854
  extract_gaussian_btn.click(
 
1858
  ).then(
1859
  lambda: gr.Button(interactive=True),
1860
  outputs=[gaussian_file]
1861
+ ).then(
1862
+ fn=update_permalink,
1863
+ inputs=[glb_file, gaussian_file, depth_output, ddd_image_path], # Use the actual depth source file here
1864
+ outputs=[permalink_row, permalink_text]
1865
  )
1866
 
1867
  if __name__ == "__main__":
 
1896
  # image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
1897
  # depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large", ignore_mismatched_sizes=True)
1898
  if constants.IS_SHARED_SPACE:
1899
+ TRELLIS_PIPELINE = TrellisImageTo3DPipeline.from_pretrained("jetx/TRELLIS-image-large")
1900
  TRELLIS_PIPELINE.to(device)
1901
  try:
1902
  TRELLIS_PIPELINE.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)), 512, True) # Preload rembg
requirements.txt CHANGED
@@ -19,7 +19,7 @@ sentencepiece
19
  --extra-index-url https://download.pytorch.org/whl/cu124
20
  torch
21
  torchvision
22
- xformers #==0.0.29.post3
23
 
24
  # Other dependencies
25
  Haishoku
@@ -65,13 +65,13 @@ xatlas==0.0.9
65
  pyvista==0.44.2
66
  pymeshfix==0.17.0
67
  igraph==0.11.8
68
- git+https://github.com/EasternJournalist/utils3d.git@9a4eb15e4021b67b12c460c7057d642626897ec8
69
  spconv-cu124==2.3.8
70
  gradio_litmodel3d==0.0.1
71
  #linux only
72
  https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.3/flash_attn-2.7.3+cu12torch2.6cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
73
- https://huggingface.co/spaces/JeffreyXiang/TRELLIS/resolve/main/wheels/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl?download=true
74
- https://huggingface.co/spaces/JeffreyXiang/TRELLIS/resolve/main/wheels/nvdiffrast-0.3.3-cp310-cp310-linux_x86_64.whl?download=true
75
  #Windows only
76
  #https://huggingface.co/spaces/Surn/HexaGrid/main/wheels/flash_attn-2.7.4.post1-cp312-cp312-win_amd64.whl?download=true
77
  #https://huggingface.co/spaces/Surn/HexaGrid/main/wheels/diff_gaussian_rasterization-0.0.0-cp312-cp312-win_amd64.whl?download=true
 
19
  --extra-index-url https://download.pytorch.org/whl/cu124
20
  torch
21
  torchvision
22
+ xformers==0.0.29.post3
23
 
24
  # Other dependencies
25
  Haishoku
 
65
  pyvista==0.44.2
66
  pymeshfix==0.17.0
67
  igraph==0.11.8
68
+ git+https://github.com/EasternJournalist/utils3d.git@3913c65d81e05e47b9f367250cf8c0f7462a0900
69
  spconv-cu124==2.3.8
70
  gradio_litmodel3d==0.0.1
71
  #linux only
72
  https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.3/flash_attn-2.7.3+cu12torch2.6cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
73
+ https://huggingface.co/spaces/Surn/HexaGrid/resolve/main/wheels/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl?download=true
74
+ https://huggingface.co/spaces/Surn/Hexagrid/resolve/main/wheels/nvdiffrast-0.3.3-cp310-cp310-linux_x86_64.whl?download=true
75
  #Windows only
76
  #https://huggingface.co/spaces/Surn/HexaGrid/main/wheels/flash_attn-2.7.4.post1-cp312-cp312-win_amd64.whl?download=true
77
  #https://huggingface.co/spaces/Surn/HexaGrid/main/wheels/diff_gaussian_rasterization-0.0.0-cp312-cp312-win_amd64.whl?download=true
utils/file_utils.py CHANGED
@@ -103,4 +103,23 @@ def get_unique_file_path(directory, filename, file_ext, counter=0):
103
  return get_unique_file_path(directory, filename, file_ext, counter + 1)
104
 
105
  # Example usage:
106
- # new_file_path = get_unique_file_path(video_dir, title_file_name, video_new_ext)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
  return get_unique_file_path(directory, filename, file_ext, counter + 1)
104
 
105
  # Example usage:
106
+ # new_file_path = get_unique_file_path(video_dir, title_file_name, video_new_ext)
107
+
108
+ def generate_permalink_from_urls(model_url, hm_url, img_url, permalink_viewer_url="surn-3d-viewer.hf.space"):
109
+ """
110
+ Constructs and returns a permalink URL with query string parameters for the viewer.
111
+ Each parameter is passed separately so that the image positions remain consistent.
112
+
113
+ Parameters:
114
+ model_url (str): Processed URL for the 3D model.
115
+ hm_url (str): Processed URL for the height map image.
116
+ img_url (str): Processed URL for the main image.
117
+ permalink_viewer_url (str): The base viewer URL.
118
+
119
+ Returns:
120
+ str: The generated permalink URL.
121
+ """
122
+ import urllib.parse
123
+ params = {"3d": model_url, "hm": hm_url, "image": img_url}
124
+ query_str = urllib.parse.urlencode(params)
125
+ return f"https://{permalink_viewer_url}/?{query_str}"