Surbhi123's picture
Upload folder using huggingface_hub
64772a4 verified
Metadata-Version: 2.3
Name: altair
Version: 5.3.0
Summary: Vega-Altair: A declarative statistical visualization library for Python.
Project-URL: Documentation, https://altair-viz.github.io
Project-URL: Source, https://github.com/altair-viz/altair
Author: Vega-Altair Contributors
License-File: LICENSE
Keywords: declarative,interactive,json,statistics,vega-lite,visualization
Classifier: Development Status :: 5 - Production/Stable
Classifier: Environment :: Console
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: BSD License
Classifier: Natural Language :: English
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Classifier: Typing :: Typed
Requires-Python: >=3.8
Requires-Dist: jinja2
Requires-Dist: jsonschema>=3.0
Requires-Dist: numpy
Requires-Dist: packaging
Requires-Dist: pandas>=0.25
Requires-Dist: toolz
Requires-Dist: typing-extensions>=4.0.1; python_version < '3.11'
Provides-Extra: all
Requires-Dist: altair-tiles>=0.3.0; extra == 'all'
Requires-Dist: anywidget>=0.9.0; extra == 'all'
Requires-Dist: pyarrow>=11; extra == 'all'
Requires-Dist: vega-datasets>=0.9.0; extra == 'all'
Requires-Dist: vegafusion[embed]>=1.6.6; extra == 'all'
Requires-Dist: vl-convert-python>=1.3.0; extra == 'all'
Provides-Extra: dev
Requires-Dist: geopandas; extra == 'dev'
Requires-Dist: hatch; extra == 'dev'
Requires-Dist: ipython; extra == 'dev'
Requires-Dist: m2r; extra == 'dev'
Requires-Dist: mypy; extra == 'dev'
Requires-Dist: pandas-stubs; extra == 'dev'
Requires-Dist: pytest; extra == 'dev'
Requires-Dist: pytest-cov; extra == 'dev'
Requires-Dist: ruff>=0.3.0; extra == 'dev'
Requires-Dist: types-jsonschema; extra == 'dev'
Requires-Dist: types-setuptools; extra == 'dev'
Provides-Extra: doc
Requires-Dist: docutils; extra == 'doc'
Requires-Dist: jinja2; extra == 'doc'
Requires-Dist: myst-parser; extra == 'doc'
Requires-Dist: numpydoc; extra == 'doc'
Requires-Dist: pillow<10,>=9; extra == 'doc'
Requires-Dist: pydata-sphinx-theme>=0.14.1; extra == 'doc'
Requires-Dist: scipy; extra == 'doc'
Requires-Dist: sphinx; extra == 'doc'
Requires-Dist: sphinx-copybutton; extra == 'doc'
Requires-Dist: sphinx-design; extra == 'doc'
Requires-Dist: sphinxext-altair; extra == 'doc'
Description-Content-Type: text/markdown
# Vega-Altair <a href="https://altair-viz.github.io/"><img align="right" src="https://altair-viz.github.io/_static/altair-logo-light.png" height="50"></img></a>
[![github actions](https://github.com/altair-viz/altair/workflows/build/badge.svg)](https://github.com/altair-viz/altair/actions?query=workflow%3Abuild)
[![typedlib_mypy](https://www.mypy-lang.org/static/mypy_badge.svg)](https://www.mypy-lang.org)
[![JOSS Paper](https://joss.theoj.org/papers/10.21105/joss.01057/status.svg)](https://joss.theoj.org/papers/10.21105/joss.01057)
[![PyPI - Downloads](https://img.shields.io/pypi/dm/altair)](https://pypi.org/project/altair)
**Vega-Altair** is a declarative statistical visualization library for Python. With Vega-Altair, you can spend more time understanding your data and its meaning. Vega-Altair's
API is simple, friendly and consistent and built on top of the powerful
[Vega-Lite](https://github.com/vega/vega-lite) JSON specification. This elegant
simplicity produces beautiful and effective visualizations with a minimal amount of code.
*Vega-Altair was originally developed by [Jake Vanderplas](https://github.com/jakevdp) and [Brian
Granger](https://github.com/ellisonbg) in close collaboration with the [UW
Interactive Data Lab](https://idl.cs.washington.edu/).*
*The Vega-Altair open source project is not affiliated with Altair Engineering, Inc.*
## Documentation
See [Vega-Altair's Documentation Site](https://altair-viz.github.io) as well as the [Tutorial Notebooks](https://github.com/altair-viz/altair_notebooks). You can
run the notebooks directly in your browser by clicking on one of the following badges:
[![Binder](https://beta.mybinder.org/badge.svg)](https://beta.mybinder.org/v2/gh/altair-viz/altair_notebooks/master)
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/altair-viz/altair_notebooks/blob/master/notebooks/Index.ipynb)
## Example
Here is an example using Vega-Altair to quickly visualize and display a dataset with the native Vega-Lite renderer in the JupyterLab:
```python
import altair as alt
# load a simple dataset as a pandas DataFrame
from vega_datasets import data
cars = data.cars()
alt.Chart(cars).mark_point().encode(
x='Horsepower',
y='Miles_per_Gallon',
color='Origin',
)
```
![Vega-Altair Visualization](https://raw.githubusercontent.com/altair-viz/altair/main/images/cars.png)
One of the unique features of Vega-Altair, inherited from Vega-Lite, is a declarative grammar of not just visualization, but _interaction_.
With a few modifications to the example above we can create a linked histogram that is filtered based on a selection of the scatter plot.
```python
import altair as alt
from vega_datasets import data
source = data.cars()
brush = alt.selection_interval()
points = alt.Chart(source).mark_point().encode(
x='Horsepower',
y='Miles_per_Gallon',
color=alt.condition(brush, 'Origin', alt.value('lightgray'))
).add_params(
brush
)
bars = alt.Chart(source).mark_bar().encode(
y='Origin',
color='Origin',
x='count(Origin)'
).transform_filter(
brush
)
points & bars
```
![Vega-Altair Visualization Gif](https://raw.githubusercontent.com/altair-viz/altair/main/images/cars_scatter_bar.gif)
## Features
* Carefully-designed, declarative Python API.
* Auto-generated internal Python API that guarantees visualizations are type-checked and
in full conformance with the [Vega-Lite](https://github.com/vega/vega-lite)
specification.
* Display visualizations in JupyterLab, Jupyter Notebook, Visual Studio Code, on GitHub and
[nbviewer](https://nbviewer.jupyter.org/), and many more.
* Export visualizations to various formats such as PNG/SVG images, stand-alone HTML pages and the
[Online Vega-Lite Editor](https://vega.github.io/editor/#/).
* Serialize visualizations as JSON files.
## Installation
Vega-Altair can be installed with:
```bash
pip install altair
```
If you are using the conda package manager, the equivalent is:
```bash
conda install altair -c conda-forge
```
For full installation instructions, please see [the documentation](https://altair-viz.github.io/getting_started/installation.html).
## Getting Help
If you have a question that is not addressed in the documentation,
you can post it on [StackOverflow](https://stackoverflow.com/questions/tagged/altair) using the `altair` tag.
For bugs and feature requests, please open a [Github Issue](https://github.com/altair-viz/altair/issues).
## Development
[![Hatch project](https://img.shields.io/badge/%F0%9F%A5%9A-Hatch-4051b5.svg)](https://github.com/pypa/hatch)
[![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)
[![pytest](https://img.shields.io/badge/logo-pytest-blue?logo=pytest&labelColor=5c5c5c&label=%20)](https://github.com/pytest-dev/pytest)
You can find the instructions on how to install the package for development in [the documentation](https://altair-viz.github.io/getting_started/installation.html).
To run the tests and linters, use
```
hatch run test
```
For information on how to contribute your developments back to the Vega-Altair repository, see
[`CONTRIBUTING.md`](https://github.com/altair-viz/altair/blob/main/CONTRIBUTING.md)
## Citing Vega-Altair
[![JOSS Paper](https://joss.theoj.org/papers/10.21105/joss.01057/status.svg)](https://joss.theoj.org/papers/10.21105/joss.01057)
If you use Vega-Altair in academic work, please consider citing https://joss.theoj.org/papers/10.21105/joss.01057 as
```bib
@article{VanderPlas2018,
doi = {10.21105/joss.01057},
url = {https://doi.org/10.21105/joss.01057},
year = {2018},
publisher = {The Open Journal},
volume = {3},
number = {32},
pages = {1057},
author = {Jacob VanderPlas and Brian Granger and Jeffrey Heer and Dominik Moritz and Kanit Wongsuphasawat and Arvind Satyanarayan and Eitan Lees and Ilia Timofeev and Ben Welsh and Scott Sievert},
title = {Altair: Interactive Statistical Visualizations for Python},
journal = {Journal of Open Source Software}
}
```
Please additionally consider citing the [Vega-Lite](https://vega.github.io/vega-lite/) project, which Vega-Altair is based on: https://dl.acm.org/doi/10.1109/TVCG.2016.2599030
```bib
@article{Satyanarayan2017,
author={Satyanarayan, Arvind and Moritz, Dominik and Wongsuphasawat, Kanit and Heer, Jeffrey},
title={Vega-Lite: A Grammar of Interactive Graphics},
journal={IEEE transactions on visualization and computer graphics},
year={2017},
volume={23},
number={1},
pages={341-350},
publisher={IEEE}
}
```