|
#pragma once |
|
|
|
#include "llama.h" |
|
|
|
#include "llama-impl.h" |
|
#include "llama-arch.h" |
|
#include "llama-mmap.h" |
|
|
|
#include "ggml-cpp.h" |
|
|
|
#include <cstddef> |
|
#include <map> |
|
#include <stdexcept> |
|
#include <unordered_map> |
|
|
|
using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>; |
|
|
|
enum llama_fver { |
|
GGUF_FILE_VERSION_V1 = 1, |
|
GGUF_FILE_VERSION_V2 = 2, |
|
GGUF_FILE_VERSION_V3 = 3, |
|
}; |
|
|
|
const char * llama_file_version_name(llama_fver version); |
|
|
|
struct llama_model_loader { |
|
|
|
struct llama_tensor_weight { |
|
uint16_t idx; |
|
size_t offs; |
|
|
|
ggml_tensor * tensor; |
|
|
|
llama_tensor_weight(const llama_file * file, uint16_t idx, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) { |
|
const int tensor_idx = gguf_find_tensor(gguf_ctx, ggml_get_name(tensor)); |
|
if (tensor_idx < 0) { |
|
throw std::runtime_error(format("tensor '%s' not found in the model", ggml_get_name(tensor))); |
|
} |
|
|
|
offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx); |
|
if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size()) { |
|
throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", ggml_get_name(tensor))); |
|
} |
|
} |
|
}; |
|
|
|
|
|
struct weight_name_comparer { |
|
bool operator()(const std::string & a, const std::string & b) const { |
|
int a_layer = -1; |
|
int b_layer = -1; |
|
sscanf(a.c_str(), "blk.%d.", &a_layer); |
|
sscanf(b.c_str(), "blk.%d.", &b_layer); |
|
if (a_layer != b_layer) { |
|
return a_layer < b_layer; |
|
} |
|
return a < b; |
|
} |
|
}; |
|
|
|
static const int TENSOR_NOT_REQUIRED = 1; |
|
static const int TENSOR_DUPLICATED = 2; |
|
|
|
int n_kv = 0; |
|
int n_tensors = 0; |
|
int n_created = 0; |
|
|
|
uint64_t n_elements = 0; |
|
size_t n_bytes = 0; |
|
|
|
bool use_mmap = false; |
|
bool check_tensors; |
|
|
|
llama_files files; |
|
llama_ftype ftype; |
|
llama_fver fver; |
|
|
|
llama_mmaps mappings; |
|
|
|
std::map<std::string, struct llama_tensor_weight, weight_name_comparer> weights_map; |
|
std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides; |
|
|
|
gguf_context_ptr meta; |
|
std::vector<ggml_context_ptr> contexts; |
|
|
|
std::string arch_name; |
|
LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN); |
|
|
|
size_t size_done = 0; |
|
size_t size_data = 0; |
|
std::vector<std::pair<size_t, size_t>> mmaps_used; |
|
|
|
llama_model_loader( |
|
const std::string & fname, |
|
std::vector<std::string> & splits, |
|
bool use_mmap, |
|
bool check_tensors, |
|
const struct llama_model_kv_override * param_overrides_p); |
|
|
|
template<typename T> |
|
typename std::enable_if<std::is_integral<T>::value, bool>::type |
|
get_arr_n(const std::string & key, T & result, bool required = true); |
|
|
|
template<typename T> |
|
typename std::enable_if<std::is_integral<T>::value, bool>::type |
|
get_arr_n(enum llm_kv kid, T & result, bool required = true); |
|
|
|
template<typename T> |
|
bool get_arr(const std::string & key, std::vector<T> & result, bool required = true); |
|
|
|
template<typename T, size_t N_MAX> |
|
bool get_arr(const std::string & key, std::array<T, N_MAX> & result, bool required = true); |
|
|
|
template<typename T> |
|
bool get_arr(enum llm_kv kid, T & result, bool required = true); |
|
|
|
template<typename T> |
|
bool get_key(const std::string & key, T & result, bool required = true); |
|
|
|
template<typename T> |
|
bool get_key(enum llm_kv kid, T & result, bool required = true); |
|
|
|
template<typename T, size_t N_MAX> |
|
bool get_key_or_arr(const std::string & key, std::array<T, N_MAX> & result, uint32_t n, bool required = true); |
|
|
|
template<typename T> |
|
bool get_key_or_arr(enum llm_kv kid, T & result, uint32_t n, bool required = true); |
|
|
|
std::string get_arch_name() const; |
|
|
|
enum llm_arch get_arch() const; |
|
|
|
const llama_tensor_weight * get_weight(const char * name) const; |
|
|
|
const llama_tensor_weight & require_weight(const char * name) const; |
|
|
|
struct ggml_tensor * get_tensor_meta(const char * name) const; |
|
|
|
struct ggml_tensor * require_tensor_meta(const std::string & name) const; |
|
|
|
const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const; |
|
|
|
struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::initializer_list<int64_t> & ne, int flags = 0); |
|
|
|
struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::initializer_list<int64_t> & ne, size_t offset, bool required = true); |
|
|
|
void done_getting_tensors() const; |
|
|
|
void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr); |
|
|
|
void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const; |
|
|
|
|
|
void load_data_for(struct ggml_tensor * cur) const; |
|
|
|
|
|
bool load_all_data( |
|
struct ggml_context * ctx, |
|
llama_buf_map & bufs, |
|
llama_mlocks * lmlocks, |
|
llama_progress_callback progress_callback, |
|
void * progress_callback_user_data); |
|
|
|
std::string ftype_name() const; |
|
|
|
void print_info() const; |
|
}; |
|
|