|
#include "llama-model-loader.h" |
|
|
|
#include "ggml.h" |
|
|
|
#include <array> |
|
#include <cinttypes> |
|
#include <cstring> |
|
#include <future> |
|
|
|
static const size_t kiB = 1024; |
|
static const size_t MiB = 1024*kiB; |
|
static const size_t GiB = 1024*MiB; |
|
|
|
const char * llama_file_version_name(llama_fver version) { |
|
switch (version) { |
|
case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)"; |
|
case GGUF_FILE_VERSION_V2: return "GGUF V2"; |
|
case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)"; |
|
} |
|
|
|
return "unknown"; |
|
} |
|
|
|
static std::string llama_model_ftype_name(llama_ftype ftype) { |
|
if (ftype & LLAMA_FTYPE_GUESSED) { |
|
return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)"; |
|
} |
|
|
|
switch (ftype) { |
|
case LLAMA_FTYPE_ALL_F32: return "all F32"; |
|
case LLAMA_FTYPE_MOSTLY_F16: return "F16"; |
|
case LLAMA_FTYPE_MOSTLY_BF16: return "BF16"; |
|
case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0"; |
|
case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1"; |
|
case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0"; |
|
case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1"; |
|
case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0"; |
|
case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium"; |
|
case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small"; |
|
case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small"; |
|
case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium"; |
|
case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large"; |
|
case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small"; |
|
case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium"; |
|
case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small"; |
|
case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium"; |
|
case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K"; |
|
case LLAMA_FTYPE_MOSTLY_TQ1_0: return "TQ1_0 - 1.69 bpw ternary"; |
|
case LLAMA_FTYPE_MOSTLY_TQ2_0: return "TQ2_0 - 2.06 bpw ternary"; |
|
case LLAMA_FTYPE_MOSTLY_IQ2_XXS: return "IQ2_XXS - 2.0625 bpw"; |
|
case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw"; |
|
case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw"; |
|
case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw"; |
|
case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw"; |
|
case LLAMA_FTYPE_MOSTLY_IQ3_XXS: return "IQ3_XXS - 3.0625 bpw"; |
|
case LLAMA_FTYPE_MOSTLY_IQ1_S: return "IQ1_S - 1.5625 bpw"; |
|
case LLAMA_FTYPE_MOSTLY_IQ1_M: return "IQ1_M - 1.75 bpw"; |
|
case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw"; |
|
case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw"; |
|
case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw"; |
|
case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw"; |
|
|
|
default: return "unknown, may not work"; |
|
} |
|
} |
|
|
|
|
|
|
|
static std::vector<std::string> llama_get_list_splits(const std::string & path, const int idx, const int n_split) { |
|
std::vector<std::string> paths; |
|
std::string split_prefix; |
|
std::vector<char> buf(llama_path_max(), 0); |
|
|
|
{ |
|
int ret = llama_split_prefix(buf.data(), buf.size(), path.c_str(), idx, n_split); |
|
if (!ret) { |
|
throw std::runtime_error(format("invalid split file name: %s", path.c_str())); |
|
} |
|
split_prefix = std::string(buf.data(), ret); |
|
} |
|
|
|
if (split_prefix.empty()) { |
|
throw std::runtime_error(format("invalid split file: %s", path.c_str())); |
|
} |
|
|
|
for (int idx = 0; idx < n_split; ++idx) { |
|
int ret = llama_split_path(buf.data(), buf.size(), split_prefix.c_str(), idx, n_split); |
|
paths.push_back(std::string(buf.data(), ret)); |
|
} |
|
|
|
return paths; |
|
} |
|
|
|
namespace GGUFMeta { |
|
template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int64_t)> |
|
struct GKV_Base_Type { |
|
static constexpr gguf_type gt = gt_; |
|
|
|
static T getter(const gguf_context * ctx, const int kid) { |
|
return gfun(ctx, kid); |
|
} |
|
}; |
|
|
|
template<typename T> struct GKV_Base; |
|
|
|
template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {}; |
|
template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {}; |
|
template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {}; |
|
template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {}; |
|
template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {}; |
|
template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {}; |
|
template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {}; |
|
template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {}; |
|
template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {}; |
|
template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {}; |
|
template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {}; |
|
template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {}; |
|
|
|
template<> struct GKV_Base<std::string> { |
|
static constexpr gguf_type gt = GGUF_TYPE_STRING; |
|
|
|
static std::string getter(const gguf_context * ctx, const int kid) { |
|
return gguf_get_val_str(ctx, kid); |
|
} |
|
}; |
|
|
|
struct ArrayInfo { |
|
const gguf_type gt; |
|
const size_t length; |
|
const void * data; |
|
}; |
|
|
|
template<> struct GKV_Base<ArrayInfo> { |
|
public: |
|
static constexpr gguf_type gt = GGUF_TYPE_ARRAY; |
|
static ArrayInfo getter(const gguf_context *ctx, const int k) { |
|
const enum gguf_type arr_type = gguf_get_arr_type(ctx, k); |
|
return ArrayInfo { |
|
arr_type, |
|
size_t(gguf_get_arr_n(ctx, k)), |
|
arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx, k), |
|
}; |
|
} |
|
}; |
|
|
|
template<typename T> |
|
class GKV : public GKV_Base<T> { |
|
GKV() = delete; |
|
|
|
public: |
|
static T get_kv(const gguf_context * ctx, const int k) { |
|
const enum gguf_type kt = gguf_get_kv_type(ctx, k); |
|
|
|
if (kt != GKV::gt) { |
|
throw std::runtime_error(format("key %s has wrong type %s but expected type %s", |
|
gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt))); |
|
} |
|
return GKV::getter(ctx, k); |
|
} |
|
|
|
static const char * override_type_to_str(const llama_model_kv_override_type ty) { |
|
switch (ty) { |
|
case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool"; |
|
case LLAMA_KV_OVERRIDE_TYPE_INT: return "int"; |
|
case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float"; |
|
case LLAMA_KV_OVERRIDE_TYPE_STR: return "str"; |
|
} |
|
return "unknown"; |
|
} |
|
|
|
static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) { |
|
if (!ovrd) { return false; } |
|
if (ovrd->tag == expected_type) { |
|
LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ", |
|
__func__, override_type_to_str(ovrd->tag), ovrd->key); |
|
switch (ovrd->tag) { |
|
case LLAMA_KV_OVERRIDE_TYPE_BOOL: { |
|
LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false"); |
|
} break; |
|
case LLAMA_KV_OVERRIDE_TYPE_INT: { |
|
LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64); |
|
} break; |
|
case LLAMA_KV_OVERRIDE_TYPE_FLOAT: { |
|
LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64); |
|
} break; |
|
case LLAMA_KV_OVERRIDE_TYPE_STR: { |
|
LLAMA_LOG_INFO("%s\n", ovrd->val_str); |
|
} break; |
|
default: |
|
|
|
throw std::runtime_error( |
|
format("Unsupported attempt to override %s type for metadata key %s\n", |
|
override_type_to_str(ovrd->tag), ovrd->key)); |
|
} |
|
return true; |
|
} |
|
LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n", |
|
__func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag)); |
|
return false; |
|
} |
|
|
|
template<typename OT> |
|
static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type |
|
try_override(OT & target, const struct llama_model_kv_override * ovrd) { |
|
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) { |
|
target = ovrd->val_bool; |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
template<typename OT> |
|
static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type |
|
try_override(OT & target, const struct llama_model_kv_override * ovrd) { |
|
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) { |
|
target = ovrd->val_i64; |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
template<typename OT> |
|
static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type |
|
try_override(T & target, const struct llama_model_kv_override * ovrd) { |
|
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) { |
|
target = ovrd->val_f64; |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
template<typename OT> |
|
static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type |
|
try_override(T & target, const struct llama_model_kv_override * ovrd) { |
|
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) { |
|
target = ovrd->val_str; |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) { |
|
if (try_override<T>(target, ovrd)) { |
|
return true; |
|
} |
|
if (k < 0) { return false; } |
|
target = get_kv(ctx, k); |
|
return true; |
|
} |
|
|
|
static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) { |
|
return set(ctx, gguf_find_key(ctx, key), target, ovrd); |
|
} |
|
|
|
static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) { |
|
return set(ctx, key.c_str(), target, ovrd); |
|
} |
|
}; |
|
} |
|
|
|
template<typename T> |
|
typename std::enable_if<std::is_integral<T>::value, bool>::type |
|
llama_model_loader::get_arr_n(const std::string & key, T & result, bool required) { |
|
const int kid = gguf_find_key(meta.get(), key.c_str()); |
|
|
|
if (kid < 0) { |
|
if (required) { |
|
throw std::runtime_error(format("key not found in model: %s", key.c_str())); |
|
} |
|
return false; |
|
} |
|
|
|
struct GGUFMeta::ArrayInfo arr_info = |
|
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta.get(), kid); |
|
|
|
|
|
result = arr_info.length; |
|
return true; |
|
} |
|
|
|
template<typename T> |
|
typename std::enable_if<std::is_integral<T>::value, bool>::type |
|
llama_model_loader::get_arr_n(enum llm_kv kid, T & result, bool required) { |
|
return get_arr_n(llm_kv(kid), result, required); |
|
} |
|
|
|
template bool llama_model_loader::get_arr_n(enum llm_kv kid, uint32_t & result, bool required); |
|
|
|
template<typename T> |
|
bool llama_model_loader::get_arr(const std::string & key, std::vector<T> & result, bool required) { |
|
const int kid = gguf_find_key(meta.get(), key.c_str()); |
|
|
|
if (kid < 0 || gguf_get_kv_type(meta.get(), kid) != GGUF_TYPE_ARRAY) { |
|
if (required) { |
|
throw std::runtime_error(format("array key not found in model: %s", key.c_str())); |
|
} |
|
return false; |
|
} |
|
|
|
struct GGUFMeta::ArrayInfo arr_info = |
|
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta.get(), kid); |
|
|
|
switch (arr_info.gt) { |
|
case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break; |
|
case GGUF_TYPE_INT32: GGML_ASSERT( |
|
(std::is_same<T, int32_t>::value) || |
|
(std::is_same<T, uint32_t>::value)); break; |
|
default: |
|
throw std::runtime_error(format("%s is not a float32, int32 array", key.c_str())); |
|
} |
|
|
|
result.resize(arr_info.length); |
|
result.assign((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length); |
|
|
|
return true; |
|
} |
|
|
|
template<typename T, size_t N_MAX> |
|
bool llama_model_loader::get_arr(const std::string & key, std::array<T, N_MAX> & result, bool required) { |
|
const int kid = gguf_find_key(meta.get(), key.c_str()); |
|
|
|
if (kid < 0 || gguf_get_kv_type(meta.get(), kid) != GGUF_TYPE_ARRAY) { |
|
if (required) { |
|
throw std::runtime_error(format("array key not found in model: %s", key.c_str())); |
|
} |
|
return false; |
|
} |
|
|
|
struct GGUFMeta::ArrayInfo arr_info = |
|
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta.get(), kid); |
|
|
|
switch (arr_info.gt) { |
|
case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break; |
|
case GGUF_TYPE_INT32: GGML_ASSERT( |
|
(std::is_same<T, int32_t>::value) || |
|
(std::is_same<T, uint32_t>::value)); break; |
|
default: |
|
throw std::runtime_error(format("%s is not a float32, int32 array", key.c_str())); |
|
} |
|
|
|
if (arr_info.length > N_MAX) { |
|
throw std::runtime_error(format("array length %u for key %s exceeds max %u", (uint32_t) arr_info.length, key.c_str(), (uint32_t) N_MAX)); |
|
} |
|
|
|
std::copy((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length, result.begin()); |
|
|
|
return true; |
|
} |
|
|
|
template<typename T> |
|
bool llama_model_loader::get_arr(enum llm_kv kid, T & result, bool required) { |
|
return get_arr(llm_kv(kid), result, required); |
|
} |
|
|
|
template<typename T> |
|
bool llama_model_loader::get_key(const std::string & key, T & result, bool required) { |
|
auto it = kv_overrides.find(key); |
|
|
|
const struct llama_model_kv_override * override = |
|
it != kv_overrides.end() ? &it->second : nullptr; |
|
|
|
const bool found = GGUFMeta::GKV<T>::set(meta.get(), key, result, override); |
|
|
|
if (required && !found) { |
|
throw std::runtime_error(format("key not found in model: %s", key.c_str())); |
|
} |
|
|
|
return found; |
|
} |
|
|
|
template<typename T> |
|
bool llama_model_loader::get_key(enum llm_kv kid, T & result, bool required) { |
|
return get_key(llm_kv(kid), result, required); |
|
} |
|
|
|
template bool llama_model_loader::get_key<bool> (enum llm_kv kid, bool & result, bool required); |
|
template bool llama_model_loader::get_key<float> (enum llm_kv kid, float & result, bool required); |
|
template bool llama_model_loader::get_key<uint32_t> (enum llm_kv kid, uint32_t & result, bool required); |
|
template bool llama_model_loader::get_key<std::string>(enum llm_kv kid, std::string & result, bool required); |
|
|
|
template<> |
|
bool llama_model_loader::get_key(enum llm_kv kid, enum llama_pooling_type & result, bool required) { |
|
uint32_t tmp; |
|
const bool found = get_key(kid, tmp, required); |
|
if (found) { |
|
result = (enum llama_pooling_type) tmp; |
|
} else { |
|
result = LLAMA_POOLING_TYPE_UNSPECIFIED; |
|
} |
|
return found; |
|
} |
|
|
|
|
|
template<typename T, size_t N_MAX> |
|
bool llama_model_loader::get_key_or_arr(const std::string & key, std::array<T, N_MAX> & result, uint32_t n, bool required) { |
|
const int kid = gguf_find_key(meta.get(), key.c_str()); |
|
|
|
if (kid < 0) { |
|
if (required) { |
|
throw std::runtime_error(format("key not found in model: %s", key.c_str())); |
|
} |
|
return false; |
|
} |
|
|
|
if (n > N_MAX) { |
|
throw std::runtime_error(format("n > N_MAX: %u > %u for key %s", (uint32_t) n, (uint32_t) N_MAX, key.c_str())); |
|
} |
|
|
|
if (gguf_get_kv_type(meta.get(), kid) == GGUF_TYPE_ARRAY) { |
|
struct GGUFMeta::ArrayInfo arr_info = |
|
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta.get(), kid); |
|
|
|
if (n != arr_info.length) { |
|
throw std::runtime_error(format("key %s has wrong array length; expected %u, got %u", key.c_str(), n, (uint32_t) arr_info.length)); |
|
} |
|
|
|
return get_arr(key, result, required); |
|
} |
|
|
|
T value; |
|
|
|
bool ok = get_key(key, value, required); |
|
if (!ok) { |
|
return false; |
|
} |
|
|
|
for (uint32_t i = 0; i < n; i++) { |
|
result[i] = value; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
template<typename T> |
|
bool llama_model_loader::get_key_or_arr(enum llm_kv kid, T & result, uint32_t n, bool required) { |
|
return get_key_or_arr(llm_kv(kid), result, n, required); |
|
} |
|
|
|
|
|
template bool llama_model_loader::get_key_or_arr<std::array<int, 4>>(enum llm_kv kid, std::array<int, 4> & result, uint32_t n, bool required); |
|
template bool llama_model_loader::get_key_or_arr<std::array<uint32_t, 512>>(enum llm_kv kid, std::array<uint32_t, 512> & result, uint32_t n, bool required); |
|
|
|
llama_model_loader::llama_model_loader( |
|
const std::string & fname, |
|
std::vector<std::string> & splits, |
|
bool use_mmap, |
|
bool check_tensors, |
|
const struct llama_model_kv_override * param_overrides_p) { |
|
int trace = 0; |
|
if (getenv("LLAMA_TRACE")) { |
|
trace = atoi(getenv("LLAMA_TRACE")); |
|
} |
|
|
|
if (param_overrides_p != nullptr) { |
|
for (const struct llama_model_kv_override * p = param_overrides_p; p->key[0] != 0; p++) { |
|
kv_overrides.insert({std::string(p->key), *p}); |
|
} |
|
} |
|
|
|
|
|
struct ggml_context * ctx = NULL; |
|
struct gguf_init_params params = { |
|
true, |
|
&ctx, |
|
}; |
|
|
|
meta.reset(gguf_init_from_file(fname.c_str(), params)); |
|
if (!meta) { |
|
throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str())); |
|
} |
|
|
|
get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false); |
|
llm_kv = LLM_KV(llm_arch_from_string(arch_name)); |
|
|
|
files.emplace_back(new llama_file(fname.c_str(), "rb")); |
|
contexts.emplace_back(ctx); |
|
|
|
|
|
|
|
|
|
for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) { |
|
std::string tensor_name = std::string(cur->name); |
|
|
|
if (weights_map.find(tensor_name) != weights_map.end()) { |
|
throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", ggml_get_name(cur))); |
|
} |
|
n_elements += ggml_nelements(cur); |
|
n_bytes += ggml_nbytes(cur); |
|
weights_map.emplace(tensor_name, llama_tensor_weight(files.back().get(), 0, meta.get(), cur)); |
|
} |
|
uint16_t n_split = 0; |
|
get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false); |
|
|
|
|
|
if (n_split > 1) { |
|
|
|
uint16_t idx = 0; |
|
const std::string kv_split_no = llm_kv(LLM_KV_SPLIT_NO); |
|
get_key(kv_split_no, idx); |
|
if (idx != 0) { |
|
throw std::runtime_error(format("illegal split file idx: %d (file: %s), model must be loaded with the first split", idx, fname.c_str())); |
|
} |
|
|
|
|
|
if (splits.empty()) { |
|
splits = llama_get_list_splits(fname, idx, n_split); |
|
} |
|
|
|
|
|
if (n_split != (uint16_t)splits.size()) { |
|
throw std::runtime_error(format("invalid split count, given: %zu splits, but expected %d", splits.size(), n_split)); |
|
} |
|
|
|
if (trace > 0) { |
|
LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split); |
|
} |
|
|
|
|
|
for (idx = 1; idx < n_split; idx++) { |
|
const char * fname_split = splits[idx].c_str(); |
|
|
|
struct gguf_init_params split_params = { |
|
true, |
|
&ctx, |
|
}; |
|
gguf_context_ptr ctx_gguf { gguf_init_from_file(fname_split, split_params) }; |
|
if (!ctx_gguf) { |
|
throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, fname_split)); |
|
} |
|
|
|
|
|
{ |
|
const int kid = gguf_find_key(ctx_gguf.get(), kv_split_no.c_str()); |
|
if (kid < 0) { |
|
throw std::runtime_error(format("missing key %s in GGUF split %s", kv_split_no.c_str(), fname_split)); |
|
} |
|
int idx_gguf = gguf_get_val_u16(ctx_gguf.get(), kid); |
|
if (idx_gguf != idx) { |
|
throw std::runtime_error(format("invalid split file idx: %d (file: %s), expected %d", idx_gguf, fname_split, idx)); |
|
} |
|
} |
|
|
|
files.emplace_back(new llama_file(fname_split, "rb")); |
|
contexts.emplace_back(ctx); |
|
|
|
|
|
for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) { |
|
std::string tensor_name = std::string(cur->name); |
|
|
|
if (weights_map.find(tensor_name) != weights_map.end()) { |
|
throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", ggml_get_name(cur))); |
|
} |
|
n_elements += ggml_nelements(cur); |
|
n_bytes += ggml_nbytes(cur); |
|
weights_map.emplace(tensor_name, llama_tensor_weight(files.back().get(), idx, ctx_gguf.get(), cur)); |
|
} |
|
} |
|
|
|
get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors); |
|
|
|
|
|
{ |
|
const int n_tensors_loaded = (int) weights_map.size(); |
|
if (n_tensors != n_tensors_loaded) { |
|
throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded)); |
|
} |
|
} |
|
|
|
LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1); |
|
} |
|
|
|
n_kv = gguf_get_n_kv(meta.get()); |
|
n_tensors = weights_map.size(); |
|
|
|
fver = (enum llama_fver) gguf_get_version(meta.get()); |
|
|
|
LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n", |
|
__func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver)); |
|
|
|
|
|
|
|
{ |
|
std::map<enum ggml_type, uint32_t> n_type; |
|
|
|
uint32_t n_type_max = 0; |
|
enum ggml_type type_max = GGML_TYPE_F32; |
|
|
|
for (const auto & it : weights_map) { |
|
const llama_tensor_weight & w = it.second; |
|
const ggml_tensor * tensor = w.tensor; |
|
|
|
enum ggml_type type = tensor->type; |
|
|
|
n_type[type]++; |
|
|
|
if (n_type_max < n_type[type]) { |
|
n_type_max = n_type[type]; |
|
type_max = type; |
|
} |
|
|
|
if (trace > 0) { |
|
const uint16_t sid = w.idx; |
|
LLAMA_LOG_INFO("%s: - tensor split %2d: %32s %-8s [ %s ]\n", __func__, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str()); |
|
} |
|
} |
|
|
|
switch (type_max) { |
|
case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break; |
|
case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break; |
|
case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break; |
|
case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break; |
|
case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break; |
|
case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break; |
|
case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break; |
|
case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break; |
|
case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break; |
|
case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break; |
|
case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break; |
|
case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break; |
|
case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break; |
|
case GGML_TYPE_TQ1_0: ftype = LLAMA_FTYPE_MOSTLY_TQ1_0; break; |
|
case GGML_TYPE_TQ2_0: ftype = LLAMA_FTYPE_MOSTLY_TQ2_0; break; |
|
case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break; |
|
case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break; |
|
case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break; |
|
case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break; |
|
case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break; |
|
case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break; |
|
case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break; |
|
case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break; |
|
case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break; |
|
default: |
|
{ |
|
LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max)); |
|
ftype = LLAMA_FTYPE_ALL_F32; |
|
} break; |
|
} |
|
|
|
|
|
ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED); |
|
|
|
{ |
|
const int kid = gguf_find_key(meta.get(), "general.file_type"); |
|
if (kid >= 0) { |
|
ftype = (llama_ftype) gguf_get_val_u32(meta.get(), kid); |
|
} |
|
} |
|
|
|
LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__); |
|
|
|
for (int i = 0; i < n_kv; i++) { |
|
const char * name = gguf_get_key(meta.get(), i); |
|
const enum gguf_type type = gguf_get_kv_type(meta.get(), i); |
|
const std::string type_name = |
|
type == GGUF_TYPE_ARRAY |
|
? format("%s[%s,%zu]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta.get(), i)), gguf_get_arr_n(meta.get(), i)) |
|
: gguf_type_name(type); |
|
|
|
std::string value = gguf_kv_to_str(meta.get(), i); |
|
const size_t MAX_VALUE_LEN = 40; |
|
if (value.size() > MAX_VALUE_LEN) { |
|
value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str()); |
|
} |
|
replace_all(value, "\n", "\\n"); |
|
|
|
LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str()); |
|
} |
|
|
|
|
|
for (auto & kv : n_type) { |
|
if (kv.second == 0) { |
|
continue; |
|
} |
|
|
|
LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second); |
|
} |
|
} |
|
|
|
if (!llama_mmap::SUPPORTED) { |
|
LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__); |
|
use_mmap = false; |
|
} |
|
|
|
this->use_mmap = use_mmap; |
|
this->check_tensors = check_tensors; |
|
} |
|
|
|
std::string llama_model_loader::get_arch_name() const { |
|
return arch_name; |
|
} |
|
|
|
enum llm_arch llama_model_loader::get_arch() const { |
|
return llm_kv.arch; |
|
} |
|
|
|
const llama_model_loader::llama_tensor_weight * llama_model_loader::get_weight(const char * name) const { |
|
auto pos = weights_map.find(name); |
|
if (pos != weights_map.end()) { |
|
return &pos->second; |
|
} |
|
|
|
return nullptr; |
|
} |
|
|
|
const llama_model_loader::llama_tensor_weight & llama_model_loader::require_weight(const char * name) const { |
|
const llama_tensor_weight * weight = get_weight(name); |
|
if (!weight) { |
|
throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name)); |
|
} |
|
return *weight; |
|
} |
|
|
|
struct ggml_tensor * llama_model_loader::get_tensor_meta(const char * name) const { |
|
const auto * weight = get_weight(name); |
|
if (!weight) { |
|
return nullptr; |
|
} |
|
return weight->tensor; |
|
} |
|
|
|
struct ggml_tensor * llama_model_loader::require_tensor_meta(const std::string & name) const { |
|
struct ggml_tensor * tensor = get_tensor_meta(name.c_str()); |
|
if (!tensor) { |
|
throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str())); |
|
} |
|
return tensor; |
|
} |
|
|
|
const struct ggml_tensor * llama_model_loader::check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const { |
|
const struct ggml_tensor * cur = get_tensor_meta(name.c_str()); |
|
|
|
if (cur == NULL) { |
|
if (!required) { |
|
return NULL; |
|
} |
|
throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str())); |
|
} |
|
|
|
{ |
|
bool is_ok = true; |
|
for (size_t i = 0; i < GGML_MAX_DIMS; ++i) { |
|
if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) { |
|
is_ok = false; |
|
break; |
|
} |
|
} |
|
if (!is_ok) { |
|
throw std::runtime_error( |
|
format("%s: tensor '%s' has wrong shape; expected %s, got %s", |
|
__func__, name.c_str(), |
|
llama_format_tensor_shape(ne).c_str(), |
|
llama_format_tensor_shape(cur).c_str())); |
|
} |
|
} |
|
|
|
return cur; |
|
} |
|
|
|
struct ggml_tensor * llama_model_loader::create_tensor(struct ggml_context * ctx, const std::string & name, const std::initializer_list<int64_t> & ne, int flags) { |
|
const struct ggml_tensor * cur = check_tensor_dims(name, ne, !(flags & TENSOR_NOT_REQUIRED)); |
|
|
|
if (cur == NULL) { |
|
return NULL; |
|
} |
|
|
|
bool duplicated = flags & TENSOR_DUPLICATED; |
|
|
|
struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur); |
|
ggml_set_name(tensor, ggml_get_name(cur)); |
|
|
|
if (duplicated) { |
|
size_data += ggml_nbytes(cur); |
|
} else { |
|
n_created++; |
|
} |
|
|
|
return tensor; |
|
|
|
} |
|
|
|
struct ggml_tensor * llama_model_loader::create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::initializer_list<int64_t> & ne, size_t offset, bool required) { |
|
const struct ggml_tensor * cur = check_tensor_dims(name, ne, required); |
|
|
|
if (cur == NULL) { |
|
return NULL; |
|
} |
|
|
|
if (cur->type != base->type) { |
|
throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type))); |
|
} |
|
|
|
std::array<int64_t, GGML_MAX_DIMS> dims; |
|
for (size_t i = 0; i < GGML_MAX_DIMS; ++i) { |
|
dims[i] = i < ne.size() ? ne.begin()[i] : 1; |
|
} |
|
|
|
struct ggml_tensor * tensor = ggml_view_4d(ctx, base, |
|
dims[0], dims[1], dims[2], dims[3], |
|
cur->nb[1], cur->nb[2], cur->nb[3], |
|
offset); |
|
|
|
ggml_set_name(tensor, name.c_str()); |
|
|
|
n_created++; |
|
|
|
return tensor; |
|
} |
|
|
|
void llama_model_loader::done_getting_tensors() const { |
|
if (n_created != n_tensors) { |
|
throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created)); |
|
} |
|
} |
|
|
|
void llama_model_loader::init_mappings(bool prefetch, llama_mlocks * mlock_mmaps) { |
|
if (use_mmap) { |
|
mappings.reserve(files.size()); |
|
mmaps_used.reserve(files.size()); |
|
for (const auto & file : files) { |
|
auto * reg = ggml_backend_dev_backend_reg(ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU)); |
|
auto * is_numa_fn = (decltype(ggml_is_numa) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_is_numa"); |
|
std::unique_ptr<llama_mmap> mapping = std::make_unique<llama_mmap>(file.get(), prefetch ? -1 : 0, is_numa_fn()); |
|
mmaps_used.emplace_back(mapping->size(), 0); |
|
if (mlock_mmaps) { |
|
std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock()); |
|
mlock_mmap->init(mapping->addr()); |
|
mlock_mmaps->emplace_back(std::move(mlock_mmap)); |
|
} |
|
mappings.emplace_back(std::move(mapping)); |
|
} |
|
} |
|
|
|
|
|
for (const auto & it : weights_map) { |
|
size_data += ggml_nbytes(it.second.tensor); |
|
} |
|
} |
|
|
|
void llama_model_loader::get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const { |
|
GGML_ASSERT(!mappings.empty()); |
|
const auto & mapping = mappings.at(idx); |
|
|
|
*first = mapping->size(); |
|
*last = 0; |
|
*addr = mapping->addr(); |
|
for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) { |
|
const auto * weight = get_weight(ggml_get_name(tensor)); |
|
if (!weight || weight->idx != idx) { |
|
continue; |
|
} |
|
*first = std::min(*first, weight->offs); |
|
*last = std::max(*last, weight->offs + ggml_nbytes(tensor)); |
|
} |
|
} |
|
|
|
void llama_model_loader::load_data_for(struct ggml_tensor * cur) const { |
|
const auto & w = require_weight(ggml_get_name(cur)); |
|
|
|
if (use_mmap) { |
|
const auto & mapping = mappings.at(w.idx); |
|
if (cur->data == nullptr) { |
|
cur->data = (uint8_t *)mapping->addr() + w.offs; |
|
} else { |
|
memcpy(cur->data, (uint8_t *)mapping->addr() + w.offs, ggml_nbytes(cur)); |
|
} |
|
} else { |
|
GGML_ASSERT(cur->data != nullptr); |
|
GGML_ASSERT(w.idx < files.size()); |
|
const auto & file = files.at(w.idx); |
|
file->seek(w.offs, SEEK_SET); |
|
file->read_raw(cur->data, ggml_nbytes(cur)); |
|
} |
|
|
|
if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) { |
|
throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur))); |
|
} |
|
} |
|
|
|
bool llama_model_loader::load_all_data( |
|
struct ggml_context * ctx, |
|
llama_buf_map & bufs, |
|
llama_mlocks * lmlocks, |
|
llama_progress_callback progress_callback, |
|
void * progress_callback_user_data) { |
|
GGML_ASSERT(size_data != 0 && "call init_mappings() first"); |
|
|
|
std::vector<no_init<uint8_t>> read_buf; |
|
std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result; |
|
|
|
|
|
|
|
constexpr size_t n_buffers = 4; |
|
constexpr size_t buffer_size = 1 * 1024 * 1024; |
|
|
|
std::vector<ggml_backend_buffer_t> host_buffers; |
|
std::vector<ggml_backend_event_t> events; |
|
std::vector<void *> host_ptrs; |
|
size_t buffer_idx = 0; |
|
ggml_backend_t upload_backend = [&](const char * func) -> ggml_backend_t { |
|
if (use_mmap || check_tensors) { |
|
return nullptr; |
|
} |
|
|
|
|
|
auto * buf = bufs.count(0) ? bufs.at(0) : nullptr; |
|
if (!buf) { |
|
LLAMA_LOG_DEBUG("%s: no buffer found for async uploads\n", func); |
|
return nullptr; |
|
} |
|
|
|
auto * buft = ggml_backend_buffer_get_type(buf); |
|
auto * dev = ggml_backend_buft_get_device(buft); |
|
if (!dev) { |
|
LLAMA_LOG_DEBUG("%s: no device found for buffer type %s for async uploads\n", func, |
|
ggml_backend_buft_name(buft)); |
|
return nullptr; |
|
} |
|
|
|
if (buft != ggml_backend_dev_buffer_type(dev)) { |
|
LLAMA_LOG_DEBUG("%s: buffer type %s is not the default buffer type for device %s for async uploads\n", func, |
|
ggml_backend_buft_name(buft), ggml_backend_dev_name(dev)); |
|
return nullptr; |
|
} |
|
|
|
ggml_backend_dev_props props; |
|
ggml_backend_dev_get_props(dev, &props); |
|
if (!props.caps.async || !props.caps.host_buffer || !props.caps.events) { |
|
LLAMA_LOG_DEBUG("%s: device %s does not support async, host buffers or events\n", func, |
|
ggml_backend_dev_name(dev)); |
|
return nullptr; |
|
} |
|
|
|
auto * host_buft = ggml_backend_dev_host_buffer_type(dev); |
|
if (!host_buft) { |
|
LLAMA_LOG_DEBUG("%s: no host buffer type found for device %s\n", func, |
|
ggml_backend_dev_name(dev)); |
|
return nullptr; |
|
} |
|
|
|
|
|
for (size_t idx = 0; idx < n_buffers; ++idx) { |
|
auto * buf = ggml_backend_buft_alloc_buffer(host_buft, buffer_size); |
|
if (!buf) { |
|
LLAMA_LOG_DEBUG("%s: failed to allocate host buffer for async uploads for device %s\n", func, |
|
ggml_backend_dev_name(dev)); |
|
return nullptr; |
|
} |
|
|
|
host_buffers.emplace_back(buf); |
|
host_ptrs.emplace_back(ggml_backend_buffer_get_base(buf)); |
|
|
|
auto * event = ggml_backend_event_new(dev); |
|
if (!event) { |
|
LLAMA_LOG_DEBUG("%s: failed to create event for async uploads for device %s\n", func, |
|
ggml_backend_dev_name(dev)); |
|
return nullptr; |
|
} |
|
|
|
events.emplace_back(event); |
|
} |
|
|
|
ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr); |
|
if (!backend) { |
|
LLAMA_LOG_DEBUG("%s: failed to initialize backend for device %s for async uploads\n", func, |
|
ggml_backend_dev_name(dev)); |
|
return nullptr; |
|
} |
|
|
|
return backend; |
|
}(__func__); |
|
|
|
if (upload_backend) { |
|
LLAMA_LOG_DEBUG("%s: using async uploads for device %s, buffer type %s, backend %s\n", __func__, |
|
ggml_backend_dev_name(ggml_backend_get_device(upload_backend)), |
|
ggml_backend_buft_name(ggml_backend_buffer_get_type(bufs.at(0))), |
|
ggml_backend_name(upload_backend)); |
|
} |
|
|
|
for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) { |
|
const auto * weight = get_weight(ggml_get_name(cur)); |
|
if (weight == nullptr) { |
|
|
|
continue; |
|
} |
|
|
|
if (progress_callback) { |
|
if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) { |
|
return false; |
|
} |
|
} |
|
|
|
size_t n_size = ggml_nbytes(cur); |
|
|
|
if (use_mmap) { |
|
const auto & mapping = mappings.at(weight->idx); |
|
ggml_backend_buffer_t buf_mmap = nullptr; |
|
if (bufs.count(weight->idx)) { |
|
buf_mmap = bufs.at(weight->idx); |
|
} |
|
uint8_t * data = (uint8_t *) mapping->addr() + weight->offs; |
|
|
|
if (check_tensors) { |
|
validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] { |
|
return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size)); |
|
})); |
|
} |
|
|
|
GGML_ASSERT(buf_mmap || cur->data); |
|
if (buf_mmap && cur->data == nullptr) { |
|
ggml_backend_tensor_alloc(buf_mmap, cur, data); |
|
if (lmlocks) { |
|
const auto & lmlock = lmlocks->at(weight->idx); |
|
lmlock->grow_to(weight->offs + n_size); |
|
} |
|
|
|
auto & mmap_used = mmaps_used[weight->idx]; |
|
mmap_used.first = std::min(mmap_used.first, weight->offs); |
|
mmap_used.second = std::max(mmap_used.second, weight->offs + n_size); |
|
} else { |
|
ggml_backend_tensor_set(cur, data, 0, n_size); |
|
} |
|
} else { |
|
const auto & file = files.at(weight->idx); |
|
if (ggml_backend_buffer_is_host(cur->buffer)) { |
|
file->seek(weight->offs, SEEK_SET); |
|
file->read_raw(cur->data, n_size); |
|
if (check_tensors) { |
|
validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] { |
|
return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size)); |
|
})); |
|
} |
|
} else { |
|
|
|
if (upload_backend) { |
|
file->seek(weight->offs, SEEK_SET); |
|
|
|
size_t bytes_read = 0; |
|
|
|
while (bytes_read < n_size) { |
|
size_t read_iteration = std::min<size_t>(buffer_size, n_size - bytes_read); |
|
|
|
ggml_backend_event_synchronize(events[buffer_idx]); |
|
file->read_raw(host_ptrs[buffer_idx], read_iteration); |
|
ggml_backend_tensor_set_async(upload_backend, cur, host_ptrs[buffer_idx], bytes_read, read_iteration); |
|
ggml_backend_event_record(events[buffer_idx], upload_backend); |
|
|
|
bytes_read += read_iteration; |
|
++buffer_idx; |
|
buffer_idx %= n_buffers; |
|
} |
|
} else { |
|
read_buf.resize(n_size); |
|
file->seek(weight->offs, SEEK_SET); |
|
file->read_raw(read_buf.data(), n_size); |
|
ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size); |
|
if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) { |
|
throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur))); |
|
} |
|
} |
|
} |
|
} |
|
|
|
size_done += n_size; |
|
} |
|
|
|
|
|
for (auto * event : events) { |
|
ggml_backend_event_synchronize(event); |
|
ggml_backend_event_free(event); |
|
} |
|
for (auto * buf : host_buffers) { |
|
ggml_backend_buffer_free(buf); |
|
} |
|
ggml_backend_free(upload_backend); |
|
|
|
|
|
bool validation_failed = false; |
|
for (auto & future : validation_result) { |
|
auto result = future.get(); |
|
if (!result.second) { |
|
LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first)); |
|
validation_failed = true; |
|
} |
|
} |
|
if (validation_failed) { |
|
throw std::runtime_error("found tensors with invalid data"); |
|
} |
|
|
|
|
|
if (size_done >= size_data) { |
|
|
|
if (use_mmap) { |
|
for (uint32_t idx = 0; idx < mappings.size(); idx++) { |
|
const auto & mmap_used = mmaps_used.at(idx); |
|
auto & mapping = mappings.at(idx); |
|
mapping->unmap_fragment(0, mmap_used.first); |
|
if (mmap_used.second != 0) { |
|
mapping->unmap_fragment(mmap_used.second, mapping->size()); |
|
} |
|
} |
|
} |
|
if (progress_callback) { |
|
|
|
|
|
return progress_callback(1.0f, progress_callback_user_data); |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
std::string llama_model_loader::ftype_name() const { |
|
return llama_model_ftype_name(ftype); |
|
} |
|
|
|
void llama_model_loader::print_info() const { |
|
LLAMA_LOG_INFO("%s: file format = %s\n", __func__, llama_file_version_name(fver)); |
|
LLAMA_LOG_INFO("%s: file type = %s\n", __func__, llama_model_ftype_name(ftype).c_str()); |
|
if (n_bytes < GiB) { |
|
LLAMA_LOG_INFO("%s: file size = %.2f MiB (%.2f BPW) \n", __func__, n_bytes/1024.0/1024.0, n_bytes*8.0/n_elements); |
|
} else { |
|
LLAMA_LOG_INFO("%s: file size = %.2f GiB (%.2f BPW) \n", __func__, n_bytes/1024.0/1024.0/1024.0, n_bytes*8.0/n_elements); |
|
} |
|
} |
|
|