Steveeeeeeen's picture
Steveeeeeeen HF Staff
add model
7e6946d
import math
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
def subsequent_chunk_mask(
size: int,
chunk_size: int,
num_left_chunks: int = -1,
device: torch.device = torch.device("cpu"),
) -> torch.Tensor:
"""Create mask for subsequent steps (size, size) with chunk size,
this is for streaming encoder
Args:
size (int): size of mask
chunk_size (int): size of chunk
num_left_chunks (int): number of left chunks
<0: use full chunk
>=0: use num_left_chunks
device (torch.device): "cpu" or "cuda" or torch.Tensor.device
Returns:
torch.Tensor: mask
Examples:
>>> subsequent_chunk_mask(4, 2)
[[1, 1, 0, 0],
[1, 1, 0, 0],
[1, 1, 1, 1],
[1, 1, 1, 1]]
"""
# NOTE this modified implementation meets onnx export requirements, but it doesn't support num_left_chunks
pos_idx = torch.arange(size, device=device)
block_value = (torch.div(pos_idx, chunk_size, rounding_mode='trunc') + 1) * chunk_size
ret = pos_idx.unsqueeze(0) < block_value.unsqueeze(1)
return ret
def add_optional_chunk_mask(xs: torch.Tensor,
masks: torch.Tensor,
use_dynamic_chunk: bool,
use_dynamic_left_chunk: bool,
decoding_chunk_size: int,
static_chunk_size: int,
num_decoding_left_chunks: int,
enable_full_context: bool = True):
""" Apply optional mask for encoder.
Args:
xs (torch.Tensor): padded input, (B, L, D), L for max length
mask (torch.Tensor): mask for xs, (B, 1, L)
use_dynamic_chunk (bool): whether to use dynamic chunk or not
use_dynamic_left_chunk (bool): whether to use dynamic left chunk for
training.
decoding_chunk_size (int): decoding chunk size for dynamic chunk, it's
0: default for training, use random dynamic chunk.
<0: for decoding, use full chunk.
>0: for decoding, use fixed chunk size as set.
static_chunk_size (int): chunk size for static chunk training/decoding
if it's greater than 0, if use_dynamic_chunk is true,
this parameter will be ignored
num_decoding_left_chunks: number of left chunks, this is for decoding,
the chunk size is decoding_chunk_size.
>=0: use num_decoding_left_chunks
<0: use all left chunks
enable_full_context (bool):
True: chunk size is either [1, 25] or full context(max_len)
False: chunk size ~ U[1, 25]
Returns:
torch.Tensor: chunk mask of the input xs.
"""
# Whether to use chunk mask or not
if use_dynamic_chunk:
max_len = xs.size(1)
if decoding_chunk_size < 0:
chunk_size = max_len
num_left_chunks = -1
elif decoding_chunk_size > 0:
chunk_size = decoding_chunk_size
num_left_chunks = num_decoding_left_chunks
else:
# chunk size is either [1, 25] or full context(max_len).
# Since we use 4 times subsampling and allow up to 1s(100 frames)
# delay, the maximum frame is 100 / 4 = 25.
chunk_size = torch.randint(1, max_len, (1, )).item()
num_left_chunks = -1
if chunk_size > max_len // 2 and enable_full_context:
chunk_size = max_len
else:
chunk_size = chunk_size % 25 + 1
if use_dynamic_left_chunk:
max_left_chunks = (max_len - 1) // chunk_size
num_left_chunks = torch.randint(0, max_left_chunks,
(1, )).item()
chunk_masks = subsequent_chunk_mask(xs.size(1), chunk_size,
num_left_chunks,
xs.device) # (L, L)
chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L)
chunk_masks = masks & chunk_masks # (B, L, L)
elif static_chunk_size > 0:
num_left_chunks = num_decoding_left_chunks
chunk_masks = subsequent_chunk_mask(xs.size(1), static_chunk_size,
num_left_chunks,
xs.device) # (L, L)
chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L)
chunk_masks = masks & chunk_masks # (B, L, L)
else:
chunk_masks = masks
assert chunk_masks.dtype == torch.bool
if (chunk_masks.sum(dim=-1) == 0).sum().item() != 0:
print('get chunk_masks all false at some timestep, force set to true, make sure they are masked in futuer computation!')
chunk_masks[chunk_masks.sum(dim=-1) == 0] = True
return chunk_masks
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
"""Make mask tensor containing indices of padded part.
See description of make_non_pad_mask.
Args:
lengths (torch.Tensor): Batch of lengths (B,).
Returns:
torch.Tensor: Mask tensor containing indices of padded part.
Examples:
>>> lengths = [5, 3, 2]
>>> make_pad_mask(lengths)
masks = [[0, 0, 0, 0 ,0],
[0, 0, 0, 1, 1],
[0, 0, 1, 1, 1]]
"""
batch_size = lengths.size(0)
max_len = max_len if max_len > 0 else lengths.max().item()
seq_range = torch.arange(0,
max_len,
dtype=torch.int64,
device=lengths.device)
seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len)
seq_length_expand = lengths.unsqueeze(-1)
mask = seq_range_expand >= seq_length_expand
return mask
class EspnetRelPositionalEncoding(torch.nn.Module):
"""Relative positional encoding module (new implementation).
Details can be found in https://github.com/espnet/espnet/pull/2816.
See : Appendix B in https://arxiv.org/abs/1901.02860
Args:
d_model (int): Embedding dimension.
max_len (int): Maximum input length.
"""
def __init__(self, d_model: int, max_len: int = 5000):
super(EspnetRelPositionalEncoding, self).__init__()
self.d_model = d_model
self.xscale = math.sqrt(self.d_model)
self.pe = None
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
def extend_pe(self, x: torch.Tensor):
"""Reset the positional encodings."""
if self.pe is not None:
# self.pe contains both positive and negative parts
# the length of self.pe is 2 * input_len - 1
if self.pe.size(1) >= x.size(1) * 2 - 1:
if self.pe.dtype != x.dtype or self.pe.device != x.device:
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
return
# Suppose `i` means to the position of query vecotr and `j` means the
# position of key vector. We use position relative positions when keys
# are to the left (i>j) and negative relative positions otherwise (i<j).
pe_positive = torch.zeros(x.size(1), self.d_model)
pe_negative = torch.zeros(x.size(1), self.d_model)
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, self.d_model, 2, dtype=torch.float32)
* -(math.log(10000.0) / self.d_model)
)
pe_positive[:, 0::2] = torch.sin(position * div_term)
pe_positive[:, 1::2] = torch.cos(position * div_term)
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
# Reserve the order of positive indices and concat both positive and
# negative indices. This is used to support the shifting trick
# as in https://arxiv.org/abs/1901.02860
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
pe_negative = pe_negative[1:].unsqueeze(0)
pe = torch.cat([pe_positive, pe_negative], dim=1)
self.pe = pe.to(device=x.device, dtype=x.dtype)
def forward(self, x: torch.Tensor, offset: Union[int, torch.Tensor] = 0) \
-> Tuple[torch.Tensor, torch.Tensor]:
"""Add positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, time, `*`).
Returns:
torch.Tensor: Encoded tensor (batch, time, `*`).
"""
self.extend_pe(x)
x = x * self.xscale
pos_emb = self.position_encoding(size=x.size(1), offset=offset)
return x, pos_emb
def position_encoding(self,
offset: Union[int, torch.Tensor],
size: int) -> torch.Tensor:
""" For getting encoding in a streaming fashion
Attention!!!!!
we apply dropout only once at the whole utterance level in a none
streaming way, but will call this function several times with
increasing input size in a streaming scenario, so the dropout will
be applied several times.
Args:
offset (int or torch.tensor): start offset
size (int): required size of position encoding
Returns:
torch.Tensor: Corresponding encoding
"""
# How to subscript a Union type:
# https://github.com/pytorch/pytorch/issues/69434
if isinstance(offset, int):
pos_emb = self.pe[
:,
self.pe.size(1) // 2 - size - offset + 1: self.pe.size(1) // 2 + size + offset,
]
elif isinstance(offset, torch.Tensor):
pos_emb = self.pe[
:,
self.pe.size(1) // 2 - size - offset + 1: self.pe.size(1) // 2 + size + offset,
]
return pos_emb
class LinearNoSubsampling(torch.nn.Module):
"""Linear transform the input without subsampling
Args:
idim (int): Input dimension.
odim (int): Output dimension.
pos_enc_class (torch.nn.Module): Positional encoding class.
"""
def __init__(self, idim: int, odim: int,
pos_enc_class: torch.nn.Module):
super().__init__()
self.out = torch.nn.Sequential(
torch.nn.Linear(idim, odim),
torch.nn.LayerNorm(odim, eps=1e-5),
)
self.pos_enc = pos_enc_class
self.right_context = 0
self.subsampling_rate = 1
def forward(
self,
x: torch.Tensor,
x_mask: torch.Tensor,
offset: Union[int, torch.Tensor] = 0
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Input x.
Args:
x (torch.Tensor): Input tensor (#batch, time, idim).
x_mask (torch.Tensor): Input mask (#batch, 1, time).
Returns:
torch.Tensor: linear input tensor (#batch, time', odim),
where time' = time .
torch.Tensor: linear input mask (#batch, 1, time'),
where time' = time .
"""
x = self.out(x)
x, pos_emb = self.pos_enc(x, offset)
return x, pos_emb, x_mask
def position_encoding(self, offset: Union[int, torch.Tensor],
size: int) -> torch.Tensor:
return self.pos_enc.position_encoding(offset, size)
class Upsample1D(nn.Module):
"""A 1D upsampling layer with an optional convolution.
Parameters:
channels (`int`):
number of channels in the inputs and outputs.
use_conv (`bool`, default `False`):
option to use a convolution.
use_conv_transpose (`bool`, default `False`):
option to use a convolution transpose.
out_channels (`int`, optional):
number of output channels. Defaults to `channels`.
"""
def __init__(self, channels: int, out_channels: int, stride: int = 2):
super().__init__()
self.channels = channels
self.out_channels = out_channels
self.stride = stride
# In this mode, first repeat interpolate, than conv with stride=1
self.conv = nn.Conv1d(self.channels, self.out_channels, stride * 2 + 1, stride=1, padding=0)
def forward(self, inputs: torch.Tensor, input_lengths: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
outputs = F.interpolate(inputs, scale_factor=float(self.stride), mode="nearest")
outputs = F.pad(outputs, (self.stride * 2, 0), value=0.0)
outputs = self.conv(outputs)
return outputs, input_lengths * self.stride
class PreLookaheadLayer(nn.Module):
def __init__(self, channels: int, pre_lookahead_len: int = 1):
super().__init__()
self.channels = channels
self.pre_lookahead_len = pre_lookahead_len
self.conv1 = nn.Conv1d(
channels, channels,
kernel_size=pre_lookahead_len + 1,
stride=1, padding=0,
)
self.conv2 = nn.Conv1d(
channels, channels,
kernel_size=3, stride=1, padding=0,
)
def forward(self, inputs: torch.Tensor, context: torch.Tensor = torch.zeros(0, 0, 0)) -> torch.Tensor:
"""
inputs: (batch_size, seq_len, channels)
"""
outputs = inputs.transpose(1, 2).contiguous()
context = context.transpose(1, 2).contiguous()
# look ahead
if context.size(2) == 0:
outputs = F.pad(outputs, (0, self.pre_lookahead_len), mode='constant', value=0.0)
else:
assert self.training is False, 'you have passed context, make sure that you are running inference mode'
assert context.size(2) == self.pre_lookahead_len
outputs = F.pad(torch.concat([outputs, context], dim=2), (0, self.pre_lookahead_len - context.size(2)), mode='constant', value=0.0)
outputs = F.leaky_relu(self.conv1(outputs))
# outputs
outputs = F.pad(outputs, (self.conv2.kernel_size[0] - 1, 0), mode='constant', value=0.0)
outputs = self.conv2(outputs)
outputs = outputs.transpose(1, 2).contiguous()
# residual connection
outputs = outputs + inputs
return outputs
class MultiHeadedAttention(nn.Module):
"""Multi-Head Attention layer.
Args:
n_head (int): The number of heads.
n_feat (int): The number of features.
dropout_rate (float): Dropout rate.
key_bias (bool): Whether to use bias in key linear layer.
"""
def __init__(self,
n_head: int,
n_feat: int,
dropout_rate: float,
key_bias: bool = True):
super().__init__()
assert n_feat % n_head == 0
# We assume d_v always equals d_k
self.d_k = n_feat // n_head
self.h = n_head
self.linear_q = nn.Linear(n_feat, n_feat)
self.linear_k = nn.Linear(n_feat, n_feat, bias=key_bias)
self.linear_v = nn.Linear(n_feat, n_feat)
self.linear_out = nn.Linear(n_feat, n_feat)
self.dropout = nn.Dropout(p=dropout_rate)
def forward_qkv(
self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Transform query, key and value.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
Returns:
torch.Tensor: Transformed query tensor, size
(#batch, n_head, time1, d_k).
torch.Tensor: Transformed key tensor, size
(#batch, n_head, time2, d_k).
torch.Tensor: Transformed value tensor, size
(#batch, n_head, time2, d_k).
"""
n_batch = query.size(0)
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
q = q.transpose(1, 2) # (batch, head, time1, d_k)
k = k.transpose(1, 2) # (batch, head, time2, d_k)
v = v.transpose(1, 2) # (batch, head, time2, d_k)
return q, k, v
def forward_attention(
self,
value: torch.Tensor,
scores: torch.Tensor,
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool)
) -> torch.Tensor:
"""Compute attention context vector.
Args:
value (torch.Tensor): Transformed value, size
(#batch, n_head, time2, d_k).
scores (torch.Tensor): Attention score, size
(#batch, n_head, time1, time2).
mask (torch.Tensor): Mask, size (#batch, 1, time2) or
(#batch, time1, time2), (0, 0, 0) means fake mask.
Returns:
torch.Tensor: Transformed value (#batch, time1, d_model)
weighted by the attention score (#batch, time1, time2).
"""
n_batch = value.size(0)
# NOTE(xcsong): When will `if mask.size(2) > 0` be True?
# 1. onnx(16/4) [WHY? Because we feed real cache & real mask for the
# 1st chunk to ease the onnx export.]
# 2. pytorch training
if mask.size(2) > 0: # time2 > 0
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
# For last chunk, time2 might be larger than scores.size(-1)
mask = mask[:, :, :, :scores.size(-1)] # (batch, 1, *, time2)
scores = scores.masked_fill(mask, -float('inf'))
attn = torch.softmax(scores, dim=-1).masked_fill(
mask, 0.0) # (batch, head, time1, time2)
# NOTE(xcsong): When will `if mask.size(2) > 0` be False?
# 1. onnx(16/-1, -1/-1, 16/0)
# 2. jit (16/-1, -1/-1, 16/0, 16/4)
else:
attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
p_attn = self.dropout(attn)
x = torch.matmul(p_attn, value) # (batch, head, time1, d_k)
x = (x.transpose(1, 2).contiguous().view(n_batch, -1,
self.h * self.d_k)
) # (batch, time1, d_model)
return self.linear_out(x) # (batch, time1, d_model)
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
pos_emb: torch.Tensor = torch.empty(0),
cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute scaled dot product attention.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
(#batch, time1, time2).
1.When applying cross attention between decoder and encoder,
the batch padding mask for input is in (#batch, 1, T) shape.
2.When applying self attention of encoder,
the mask is in (#batch, T, T) shape.
3.When applying self attention of decoder,
the mask is in (#batch, L, L) shape.
4.If the different position in decoder see different block
of the encoder, such as Mocha, the passed in mask could be
in (#batch, L, T) shape. But there is no such case in current
CosyVoice.
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
Returns:
torch.Tensor: Output tensor (#batch, time1, d_model).
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
"""
q, k, v = self.forward_qkv(query, key, value)
# NOTE(xcsong):
# when export onnx model, for 1st chunk, we feed
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
# In all modes, `if cache.size(0) > 0` will alwayse be `True`
# and we will always do splitting and
# concatnation(this will simplify onnx export). Note that
# it's OK to concat & split zero-shaped tensors(see code below).
# when export jit model, for 1st chunk, we always feed
# cache(0, 0, 0, 0) since jit supports dynamic if-branch.
# >>> a = torch.ones((1, 2, 0, 4))
# >>> b = torch.ones((1, 2, 3, 4))
# >>> c = torch.cat((a, b), dim=2)
# >>> torch.equal(b, c) # True
# >>> d = torch.split(a, 2, dim=-1)
# >>> torch.equal(d[0], d[1]) # True
if cache.size(0) > 0:
key_cache, value_cache = torch.split(cache,
cache.size(-1) // 2,
dim=-1)
k = torch.cat([key_cache, k], dim=2)
v = torch.cat([value_cache, v], dim=2)
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
# non-trivial to calculate `next_cache_start` here.
new_cache = torch.cat((k, v), dim=-1)
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
return self.forward_attention(v, scores, mask), new_cache
class RelPositionMultiHeadedAttention(MultiHeadedAttention):
"""Multi-Head Attention layer with relative position encoding.
Paper: https://arxiv.org/abs/1901.02860
Args:
n_head (int): The number of heads.
n_feat (int): The number of features.
dropout_rate (float): Dropout rate.
key_bias (bool): Whether to use bias in key linear layer.
"""
def __init__(self,
n_head: int,
n_feat: int,
dropout_rate: float,
key_bias: bool = True):
super().__init__(n_head, n_feat, dropout_rate, key_bias)
# linear transformation for positional encoding
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
# these two learnable bias are used in matrix c and matrix d
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
torch.nn.init.xavier_uniform_(self.pos_bias_u)
torch.nn.init.xavier_uniform_(self.pos_bias_v)
def rel_shift(self, x: torch.Tensor) -> torch.Tensor:
"""Compute relative positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1).
time1 means the length of query vector.
Returns:
torch.Tensor: Output tensor.
"""
zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1),
device=x.device,
dtype=x.dtype)
x_padded = torch.cat([zero_pad, x], dim=-1)
x_padded = x_padded.view(x.size()[0],
x.size()[1],
x.size(3) + 1, x.size(2))
x = x_padded[:, :, 1:].view_as(x)[
:, :, :, : x.size(-1) // 2 + 1
] # only keep the positions from 0 to time2
return x
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
pos_emb: torch.Tensor = torch.empty(0),
cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
(#batch, time1, time2), (0, 0, 0) means fake mask.
pos_emb (torch.Tensor): Positional embedding tensor
(#batch, time2, size).
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
Returns:
torch.Tensor: Output tensor (#batch, time1, d_model).
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
"""
q, k, v = self.forward_qkv(query, key, value)
q = q.transpose(1, 2) # (batch, time1, head, d_k)
# NOTE(xcsong):
# when export onnx model, for 1st chunk, we feed
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
# In all modes, `if cache.size(0) > 0` will alwayse be `True`
# and we will always do splitting and
# concatnation(this will simplify onnx export). Note that
# it's OK to concat & split zero-shaped tensors(see code below).
# when export jit model, for 1st chunk, we always feed
# cache(0, 0, 0, 0) since jit supports dynamic if-branch.
# >>> a = torch.ones((1, 2, 0, 4))
# >>> b = torch.ones((1, 2, 3, 4))
# >>> c = torch.cat((a, b), dim=2)
# >>> torch.equal(b, c) # True
# >>> d = torch.split(a, 2, dim=-1)
# >>> torch.equal(d[0], d[1]) # True
if cache.size(0) > 0:
key_cache, value_cache = torch.split(cache,
cache.size(-1) // 2,
dim=-1)
k = torch.cat([key_cache, k], dim=2)
v = torch.cat([value_cache, v], dim=2)
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
# non-trivial to calculate `next_cache_start` here.
new_cache = torch.cat((k, v), dim=-1)
n_batch_pos = pos_emb.size(0)
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
p = p.transpose(1, 2) # (batch, head, time1, d_k)
# (batch, head, time1, d_k)
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
# (batch, head, time1, d_k)
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
# compute attention score
# first compute matrix a and matrix c
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
# (batch, head, time1, time2)
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
# compute matrix b and matrix d
# (batch, head, time1, time2)
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
# NOTE(Xiang Lyu): Keep rel_shift since espnet rel_pos_emb is used
if matrix_ac.shape != matrix_bd.shape:
matrix_bd = self.rel_shift(matrix_bd)
scores = (matrix_ac + matrix_bd) / math.sqrt(
self.d_k) # (batch, head, time1, time2)
return self.forward_attention(v, scores, mask), new_cache
class PositionwiseFeedForward(torch.nn.Module):
"""Positionwise feed forward layer.
FeedForward are appied on each position of the sequence.
The output dim is same with the input dim.
Args:
idim (int): Input dimenstion.
hidden_units (int): The number of hidden units.
dropout_rate (float): Dropout rate.
activation (torch.nn.Module): Activation function
"""
def __init__(
self,
idim: int,
hidden_units: int,
dropout_rate: float,
activation: torch.nn.Module = torch.nn.ReLU(),
):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = torch.nn.Linear(idim, hidden_units)
self.activation = activation
self.dropout = torch.nn.Dropout(dropout_rate)
self.w_2 = torch.nn.Linear(hidden_units, idim)
def forward(self, xs: torch.Tensor) -> torch.Tensor:
"""Forward function.
Args:
xs: input tensor (B, L, D)
Returns:
output tensor, (B, L, D)
"""
return self.w_2(self.dropout(self.activation(self.w_1(xs))))
class ConformerEncoderLayer(nn.Module):
"""Encoder layer module.
Args:
size (int): Input dimension.
self_attn (torch.nn.Module): Self-attention module instance.
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention`
instance can be used as the argument.
feed_forward (torch.nn.Module): Feed-forward module instance.
`PositionwiseFeedForward` instance can be used as the argument.
feed_forward_macaron (torch.nn.Module): Additional feed-forward module
instance.
`PositionwiseFeedForward` instance can be used as the argument.
conv_module (torch.nn.Module): Convolution module instance.
`ConvlutionModule` instance can be used as the argument.
dropout_rate (float): Dropout rate.
normalize_before (bool):
True: use layer_norm before each sub-block.
False: use layer_norm after each sub-block.
"""
def __init__(
self,
size: int,
self_attn: torch.nn.Module,
feed_forward: Optional[nn.Module] = None,
feed_forward_macaron: Optional[nn.Module] = None,
conv_module: Optional[nn.Module] = None,
dropout_rate: float = 0.0,
normalize_before: bool = True,
):
super().__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.feed_forward_macaron = feed_forward_macaron
self.conv_module = conv_module
self.norm_ff = nn.LayerNorm(size, eps=1e-12) # for the FNN module
self.norm_mha = nn.LayerNorm(size, eps=1e-12) # for the MHA module
if feed_forward_macaron is not None:
self.norm_ff_macaron = nn.LayerNorm(size, eps=1e-12)
self.ff_scale = 0.5
else:
self.ff_scale = 1.0
if self.conv_module is not None:
self.norm_conv = nn.LayerNorm(size, eps=1e-12) # for the CNN module
self.norm_final = nn.LayerNorm(
size, eps=1e-12) # for the final output of the block
self.dropout = nn.Dropout(dropout_rate)
self.size = size
self.normalize_before = normalize_before
def forward(
self,
x: torch.Tensor,
mask: torch.Tensor,
pos_emb: torch.Tensor,
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""Compute encoded features.
Args:
x (torch.Tensor): (#batch, time, size)
mask (torch.Tensor): Mask tensor for the input (#batch, time,time),
(0, 0, 0) means fake mask.
pos_emb (torch.Tensor): positional encoding, must not be None
for ConformerEncoderLayer.
mask_pad (torch.Tensor): batch padding mask used for conv module.
(#batch, 1,time), (0, 0, 0) means fake mask.
att_cache (torch.Tensor): Cache tensor of the KEY & VALUE
(#batch=1, head, cache_t1, d_k * 2), head * d_k == size.
cnn_cache (torch.Tensor): Convolution cache in conformer layer
(#batch=1, size, cache_t2)
Returns:
torch.Tensor: Output tensor (#batch, time, size).
torch.Tensor: Mask tensor (#batch, time, time).
torch.Tensor: att_cache tensor,
(#batch=1, head, cache_t1 + time, d_k * 2).
torch.Tensor: cnn_cahce tensor (#batch, size, cache_t2).
"""
# whether to use macaron style
if self.feed_forward_macaron is not None:
residual = x
if self.normalize_before:
x = self.norm_ff_macaron(x)
x = residual + self.ff_scale * self.dropout(
self.feed_forward_macaron(x))
if not self.normalize_before:
x = self.norm_ff_macaron(x)
# multi-headed self-attention module
residual = x
if self.normalize_before:
x = self.norm_mha(x)
x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb,
att_cache)
x = residual + self.dropout(x_att)
if not self.normalize_before:
x = self.norm_mha(x)
# convolution module
# Fake new cnn cache here, and then change it in conv_module
new_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
if self.conv_module is not None:
residual = x
if self.normalize_before:
x = self.norm_conv(x)
x, new_cnn_cache = self.conv_module(x, mask_pad, cnn_cache)
x = residual + self.dropout(x)
if not self.normalize_before:
x = self.norm_conv(x)
# feed forward module
residual = x
if self.normalize_before:
x = self.norm_ff(x)
x = residual + self.ff_scale * self.dropout(self.feed_forward(x))
if not self.normalize_before:
x = self.norm_ff(x)
if self.conv_module is not None:
x = self.norm_final(x)
return x, mask, new_att_cache, new_cnn_cache
class UpsampleConformerEncoder(torch.nn.Module):
"""
Args:
input_size (int): input dim
output_size (int): dimension of attention
attention_heads (int): the number of heads of multi head attention
linear_units (int): the hidden units number of position-wise feed
forward
num_blocks (int): the number of decoder blocks
static_chunk_size (int): chunk size for static chunk training and
decoding
use_dynamic_chunk (bool): whether use dynamic chunk size for
training or not, You can only use fixed chunk(chunk_size > 0)
or dyanmic chunk size(use_dynamic_chunk = True)
use_dynamic_left_chunk (bool): whether use dynamic left chunk in
dynamic chunk training
key_bias: whether use bias in attention.linear_k, False for whisper models.
"""
def __init__(
self,
input_size: int = 512,
output_size: int = 512,
attention_heads: int = 8,
linear_units: int = 2048,
num_blocks: int = 6,
static_chunk_size: int = 25,
use_dynamic_chunk: bool = False,
use_dynamic_left_chunk: bool = False,
key_bias: bool = True,
):
super().__init__()
self._output_size = output_size
self.embed = LinearNoSubsampling(
input_size, output_size,
EspnetRelPositionalEncoding(output_size),
)
self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5)
self.static_chunk_size = static_chunk_size
self.use_dynamic_chunk = use_dynamic_chunk
self.use_dynamic_left_chunk = use_dynamic_left_chunk
activation = torch.nn.SiLU()
# self-attention module definition
encoder_selfattn_layer_args = (
attention_heads,
output_size,
0.0,
key_bias,
)
# feed-forward module definition
positionwise_layer_args = (
output_size,
linear_units,
0.0,
activation,
)
# convolution module definition
self.pre_lookahead_layer = PreLookaheadLayer(channels=512, pre_lookahead_len=3)
self.encoders = torch.nn.ModuleList([
ConformerEncoderLayer(
output_size,
RelPositionMultiHeadedAttention(*encoder_selfattn_layer_args),
PositionwiseFeedForward(*positionwise_layer_args),
) for _ in range(num_blocks)
])
self.up_layer = Upsample1D(channels=512, out_channels=512, stride=2)
self.up_embed = LinearNoSubsampling(
input_size, output_size,
EspnetRelPositionalEncoding(output_size),
)
self.up_encoders = torch.nn.ModuleList([
ConformerEncoderLayer(
output_size,
RelPositionMultiHeadedAttention(*encoder_selfattn_layer_args),
PositionwiseFeedForward(*positionwise_layer_args),
) for _ in range(4)
])
def output_size(self) -> int:
return self._output_size
def forward(
self,
xs: torch.Tensor,
xs_lens: torch.Tensor,
context: torch.Tensor = torch.zeros(0, 0, 0),
decoding_chunk_size: int = 0,
num_decoding_left_chunks: int = -1,
streaming: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Embed positions in tensor.
Args:
xs: padded input tensor (B, T, D)
xs_lens: input length (B)
decoding_chunk_size: decoding chunk size for dynamic chunk
0: default for training, use random dynamic chunk.
<0: for decoding, use full chunk.
>0: for decoding, use fixed chunk size as set.
num_decoding_left_chunks: number of left chunks, this is for decoding,
the chunk size is decoding_chunk_size.
>=0: use num_decoding_left_chunks
<0: use all left chunks
Returns:
encoder output tensor xs, and subsampled masks
xs: padded output tensor (B, T' ~= T/subsample_rate, D)
masks: torch.Tensor batch padding mask after subsample
(B, 1, T' ~= T/subsample_rate)
NOTE(xcsong):
We pass the `__call__` method of the modules instead of `forward` to the
checkpointing API because `__call__` attaches all the hooks of the module.
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
"""
T = xs.size(1)
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
xs, pos_emb, masks = self.embed(xs, masks)
if context.size(1) != 0:
assert self.training is False, 'you have passed context, make sure that you are running inference mode'
context_masks = torch.ones(1, 1, context.size(1)).to(masks)
context, _, _ = self.embed(context, context_masks, offset=xs.size(1))
mask_pad = masks # (B, 1, T/subsample_rate)
chunk_masks = add_optional_chunk_mask(xs, masks, False, False, 0, self.static_chunk_size if streaming is True else 0, -1)
# lookahead + conformer encoder
xs = self.pre_lookahead_layer(xs, context=context)
xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad)
# upsample + conformer encoder
xs = xs.transpose(1, 2).contiguous()
xs, xs_lens = self.up_layer(xs, xs_lens)
xs = xs.transpose(1, 2).contiguous()
T = xs.size(1)
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
xs, pos_emb, masks = self.up_embed(xs, masks)
mask_pad = masks # (B, 1, T/subsample_rate)
chunk_masks = add_optional_chunk_mask(xs, masks, False, False, 0, self.static_chunk_size * self.up_layer.stride if streaming is True else 0, -1)
xs = self.forward_up_layers(xs, chunk_masks, pos_emb, mask_pad)
xs = self.after_norm(xs)
# Here we assume the mask is not changed in encoder layers, so just
# return the masks before encoder layers, and the masks will be used
# for cross attention with decoder later
return xs, masks
def forward_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor,
pos_emb: torch.Tensor,
mask_pad: torch.Tensor) -> torch.Tensor:
for layer in self.encoders:
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
return xs
def forward_up_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor,
pos_emb: torch.Tensor,
mask_pad: torch.Tensor) -> torch.Tensor:
for layer in self.up_encoders:
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
return xs