Steveeeeeeen's picture
Steveeeeeeen HF Staff
add model
7e6946d
import math
from typing import Any, Dict, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.models.attention import (GEGLU, GELU, AdaLayerNorm,
AdaLayerNormZero, ApproximateGELU)
from diffusers.models.attention_processor import Attention
from diffusers.models.lora import LoRACompatibleLinear
from diffusers.utils.torch_utils import maybe_allow_in_graph
from einops import pack, rearrange, repeat
from flashcosyvoice.modules.flow_components.upsample_encoder import \
add_optional_chunk_mask
def mask_to_bias(mask: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
assert mask.dtype == torch.bool
assert dtype in [torch.float32, torch.bfloat16, torch.float16]
mask = mask.to(dtype)
# attention mask bias
# NOTE(Mddct): torch.finfo jit issues
# chunk_masks = (1.0 - chunk_masks) * torch.finfo(dtype).min
mask = (1.0 - mask) * -1.0e+10
return mask
class SnakeBeta(nn.Module):
"""
A modified Snake function which uses separate parameters for the magnitude of the periodic components
Shape:
- Input: (B, C, T)
- Output: (B, C, T), same shape as the input
Parameters:
- alpha - trainable parameter that controls frequency
- beta - trainable parameter that controls magnitude
References:
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
https://arxiv.org/abs/2006.08195
Examples:
>>> a1 = snakebeta(256)
>>> x = torch.randn(256)
>>> x = a1(x)
Args:
in_features: shape of the input
out_features: shape of the output
alpha: trainable parameter that controls frequency
alpha_trainable: whether alpha is trainable
alpha_logscale: whether to use log scale for alpha
alpha is initialized to 1 by default, higher values = higher-frequency.
beta is initialized to 1 by default, higher values = higher-magnitude.
alpha will be trained along with the rest of your model.
"""
def __init__(self, in_features, out_features, alpha=1.0, alpha_trainable=True, alpha_logscale=True):
super().__init__()
self.in_features = out_features if isinstance(out_features, list) else [out_features]
self.proj = LoRACompatibleLinear(in_features, out_features)
# initialize alpha
self.alpha_logscale = alpha_logscale
if self.alpha_logscale: # log scale alphas initialized to zeros
self.alpha = nn.Parameter(torch.zeros(self.in_features) * alpha)
self.beta = nn.Parameter(torch.zeros(self.in_features) * alpha)
else: # linear scale alphas initialized to ones
self.alpha = nn.Parameter(torch.ones(self.in_features) * alpha)
self.beta = nn.Parameter(torch.ones(self.in_features) * alpha)
self.alpha.requires_grad = alpha_trainable
self.beta.requires_grad = alpha_trainable
self.no_div_by_zero = 0.000000001
def forward(self, x):
"""
Forward pass of the function.
Applies the function to the input elementwise.
SnakeBeta ∶= x + 1/b * sin^2 (xa)
"""
x = self.proj(x)
if self.alpha_logscale:
alpha = torch.exp(self.alpha)
beta = torch.exp(self.beta)
else:
alpha = self.alpha
beta = self.beta
x = x + (1.0 / (beta + self.no_div_by_zero)) * torch.pow(torch.sin(x * alpha), 2)
return x
class FeedForward(nn.Module):
r"""
A feed-forward layer.
Parameters:
dim (`int`): The number of channels in the input.
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
"""
def __init__(
self,
dim: int,
dim_out: Optional[int] = None,
mult: int = 4,
dropout: float = 0.0,
activation_fn: str = "geglu",
final_dropout: bool = False,
):
super().__init__()
inner_dim = int(dim * mult)
dim_out = dim_out if dim_out is not None else dim
if activation_fn == "gelu":
act_fn = GELU(dim, inner_dim)
if activation_fn == "gelu-approximate":
act_fn = GELU(dim, inner_dim, approximate="tanh")
elif activation_fn == "geglu":
act_fn = GEGLU(dim, inner_dim)
elif activation_fn == "geglu-approximate":
act_fn = ApproximateGELU(dim, inner_dim)
elif activation_fn == "snakebeta":
act_fn = SnakeBeta(dim, inner_dim)
self.net = nn.ModuleList([])
# project in
self.net.append(act_fn)
# project dropout
self.net.append(nn.Dropout(dropout))
# project out
self.net.append(LoRACompatibleLinear(inner_dim, dim_out))
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(dropout))
def forward(self, hidden_states):
for module in self.net:
hidden_states = module(hidden_states)
return hidden_states
@maybe_allow_in_graph
class BasicTransformerBlock(nn.Module):
r"""
A basic Transformer block.
Parameters:
dim (`int`): The number of channels in the input and output.
num_attention_heads (`int`): The number of heads to use for multi-head attention.
attention_head_dim (`int`): The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
only_cross_attention (`bool`, *optional*):
Whether to use only cross-attention layers. In this case two cross attention layers are used.
double_self_attention (`bool`, *optional*):
Whether to use two self-attention layers. In this case no cross attention layers are used.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
num_embeds_ada_norm (:
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
attention_bias (:
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
"""
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
dropout=0.0,
cross_attention_dim: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
attention_bias: bool = False,
only_cross_attention: bool = False,
double_self_attention: bool = False,
upcast_attention: bool = False,
norm_elementwise_affine: bool = True,
norm_type: str = "layer_norm",
final_dropout: bool = False,
):
super().__init__()
self.only_cross_attention = only_cross_attention
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
raise ValueError(
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
)
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
if self.use_ada_layer_norm:
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
elif self.use_ada_layer_norm_zero:
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
else:
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
self.attn1 = Attention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
upcast_attention=upcast_attention,
)
# 2. Cross-Attn
if cross_attention_dim is not None or double_self_attention:
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
self.norm2 = (
AdaLayerNorm(dim, num_embeds_ada_norm)
if self.use_ada_layer_norm
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
)
self.attn2 = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
# scale_qk=False, # uncomment this to not to use flash attention
) # is self-attn if encoder_hidden_states is none
else:
self.norm2 = None
self.attn2 = None
# 3. Feed-forward
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
# let chunk size default to None
self._chunk_size = None
self._chunk_dim = 0
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
# Sets chunk feed-forward
self._chunk_size = chunk_size
self._chunk_dim = dim
def forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
timestep: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
class_labels: Optional[torch.LongTensor] = None,
):
# Notice that normalization is always applied before the real computation in the following blocks.
# 1. Self-Attention
if self.use_ada_layer_norm:
norm_hidden_states = self.norm1(hidden_states, timestep)
elif self.use_ada_layer_norm_zero:
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
)
else:
norm_hidden_states = self.norm1(hidden_states)
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
attention_mask=encoder_attention_mask if self.only_cross_attention else attention_mask,
**cross_attention_kwargs,
)
if self.use_ada_layer_norm_zero:
attn_output = gate_msa.unsqueeze(1) * attn_output
hidden_states = attn_output + hidden_states
# 2. Cross-Attention
if self.attn2 is not None:
norm_hidden_states = (
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
)
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
**cross_attention_kwargs,
)
hidden_states = attn_output + hidden_states
# 3. Feed-forward
norm_hidden_states = self.norm3(hidden_states)
if self.use_ada_layer_norm_zero:
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
raise ValueError(
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
)
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
ff_output = torch.cat(
[self.ff(hid_slice) for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)],
dim=self._chunk_dim,
)
else:
ff_output = self.ff(norm_hidden_states)
if self.use_ada_layer_norm_zero:
ff_output = gate_mlp.unsqueeze(1) * ff_output
hidden_states = ff_output + hidden_states
return hidden_states
class SinusoidalPosEmb(torch.nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
assert self.dim % 2 == 0, "SinusoidalPosEmb requires dim to be even"
def forward(self, x, scale=1000):
if x.ndim < 1:
x = x.unsqueeze(0)
device = x.device
half_dim = self.dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
return emb
class Block1D(torch.nn.Module):
def __init__(self, dim, dim_out, groups=8):
super().__init__()
self.block = torch.nn.Sequential(
torch.nn.Conv1d(dim, dim_out, 3, padding=1),
torch.nn.GroupNorm(groups, dim_out),
nn.Mish(),
)
def forward(self, x, mask):
output = self.block(x * mask)
return output * mask
class ResnetBlock1D(torch.nn.Module):
def __init__(self, dim, dim_out, time_emb_dim, groups=8):
super().__init__()
self.mlp = torch.nn.Sequential(nn.Mish(), torch.nn.Linear(time_emb_dim, dim_out))
self.block1 = Block1D(dim, dim_out, groups=groups)
self.block2 = Block1D(dim_out, dim_out, groups=groups)
self.res_conv = torch.nn.Conv1d(dim, dim_out, 1)
def forward(self, x, mask, time_emb):
h = self.block1(x, mask)
h += self.mlp(time_emb).unsqueeze(-1)
h = self.block2(h, mask)
output = h + self.res_conv(x * mask)
return output
class Downsample1D(nn.Module):
def __init__(self, dim):
super().__init__()
self.conv = torch.nn.Conv1d(dim, dim, 3, 2, 1)
def forward(self, x):
return self.conv(x)
class TimestepEmbedding(nn.Module):
def __init__(
self,
in_channels: int,
time_embed_dim: int,
act_fn: str = "silu",
out_dim: int = None,
post_act_fn: Optional[str] = None,
cond_proj_dim=None,
):
super().__init__()
assert act_fn == "silu", "act_fn must be silu"
self.linear_1 = nn.Linear(in_channels, time_embed_dim)
if cond_proj_dim is not None:
self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False)
else:
self.cond_proj = None
self.act = nn.SiLU()
if out_dim is not None:
time_embed_dim_out = out_dim
else:
time_embed_dim_out = time_embed_dim
self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out)
if post_act_fn is None:
self.post_act = None
else:
self.post_act = nn.SiLU()
def forward(self, sample, condition=None):
if condition is not None:
sample = sample + self.cond_proj(condition)
sample = self.linear_1(sample)
if self.act is not None:
sample = self.act(sample)
sample = self.linear_2(sample)
if self.post_act is not None:
sample = self.post_act(sample)
return sample
class Upsample1D(nn.Module):
"""A 1D upsampling layer with an optional convolution.
Parameters:
channels (`int`):
number of channels in the inputs and outputs.
use_conv (`bool`, default `False`):
option to use a convolution.
use_conv_transpose (`bool`, default `False`):
option to use a convolution transpose.
out_channels (`int`, optional):
number of output channels. Defaults to `channels`.
"""
def __init__(self, channels, use_conv=False, use_conv_transpose=True, out_channels=None, name="conv"):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_conv_transpose = use_conv_transpose
self.name = name
self.conv = None
if use_conv_transpose:
self.conv = nn.ConvTranspose1d(channels, self.out_channels, 4, 2, 1)
elif use_conv:
self.conv = nn.Conv1d(self.channels, self.out_channels, 3, padding=1)
def forward(self, inputs):
assert inputs.shape[1] == self.channels
if self.use_conv_transpose:
return self.conv(inputs)
outputs = F.interpolate(inputs, scale_factor=2.0, mode="nearest")
if self.use_conv:
outputs = self.conv(outputs)
return outputs
class Transpose(torch.nn.Module):
def __init__(self, dim0: int, dim1: int):
super().__init__()
self.dim0 = dim0
self.dim1 = dim1
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = torch.transpose(x, self.dim0, self.dim1)
return x
class CausalConv1d(torch.nn.Conv1d):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
dilation: int = 1,
groups: int = 1,
bias: bool = True,
padding_mode: str = 'zeros',
device=None,
dtype=None
) -> None:
super(CausalConv1d, self).__init__(in_channels, out_channels,
kernel_size, stride,
padding=0, dilation=dilation,
groups=groups, bias=bias,
padding_mode=padding_mode,
device=device, dtype=dtype)
assert stride == 1
self.causal_padding = kernel_size - 1
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = F.pad(x, (self.causal_padding, 0), value=0.0)
x = super(CausalConv1d, self).forward(x)
return x
class CausalBlock1D(Block1D):
def __init__(self, dim: int, dim_out: int):
super(CausalBlock1D, self).__init__(dim, dim_out)
self.block = torch.nn.Sequential(
CausalConv1d(dim, dim_out, 3),
Transpose(1, 2),
nn.LayerNorm(dim_out),
Transpose(1, 2),
nn.Mish(),
)
def forward(self, x: torch.Tensor, mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
output = self.block(x * mask)
return output * mask
class CausalResnetBlock1D(ResnetBlock1D):
def __init__(self, dim: int, dim_out: int, time_emb_dim: int, groups: int = 8):
super(CausalResnetBlock1D, self).__init__(dim, dim_out, time_emb_dim, groups)
self.block1 = CausalBlock1D(dim, dim_out)
self.block2 = CausalBlock1D(dim_out, dim_out)
class ConditionalDecoder(nn.Module):
"""
This decoder requires an input with the same shape of the target. So, if your text content
is shorter or longer than the outputs, please re-sampling it before feeding to the decoder.
Args:
in_channels: number of input channels
out_channels: number of output channels
channels: tuple of channel dimensions
dropout: dropout rate
attention_head_dim: dimension of attention heads
n_blocks: number of transformer blocks
num_mid_blocks: number of middle blocks
num_heads: number of attention heads
act_fn: activation function name
"""
def __init__(
self,
in_channels,
out_channels,
channels=(256, 256),
dropout=0.05,
attention_head_dim=64,
n_blocks=1,
num_mid_blocks=2,
num_heads=4,
act_fn="snake",
):
super().__init__()
channels = tuple(channels)
self.in_channels = in_channels
self.out_channels = out_channels
self.time_embeddings = SinusoidalPosEmb(in_channels)
time_embed_dim = channels[0] * 4
self.time_mlp = TimestepEmbedding(
in_channels=in_channels,
time_embed_dim=time_embed_dim,
act_fn="silu",
)
self.down_blocks = nn.ModuleList([])
self.mid_blocks = nn.ModuleList([])
self.up_blocks = nn.ModuleList([])
output_channel = in_channels
for i in range(len(channels)): # pylint: disable=consider-using-enumerate
input_channel = output_channel
output_channel = channels[i]
is_last = i == len(channels) - 1
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
dim=output_channel,
num_attention_heads=num_heads,
attention_head_dim=attention_head_dim,
dropout=dropout,
activation_fn=act_fn,
)
for _ in range(n_blocks)
]
)
downsample = (
Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1)
)
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
for _ in range(num_mid_blocks):
input_channel = channels[-1]
out_channels = channels[-1]
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
dim=output_channel,
num_attention_heads=num_heads,
attention_head_dim=attention_head_dim,
dropout=dropout,
activation_fn=act_fn,
)
for _ in range(n_blocks)
]
)
self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
channels = channels[::-1] + (channels[0],)
for i in range(len(channels) - 1):
input_channel = channels[i] * 2
output_channel = channels[i + 1]
is_last = i == len(channels) - 2
resnet = ResnetBlock1D(
dim=input_channel,
dim_out=output_channel,
time_emb_dim=time_embed_dim,
)
transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
dim=output_channel,
num_attention_heads=num_heads,
attention_head_dim=attention_head_dim,
dropout=dropout,
activation_fn=act_fn,
)
for _ in range(n_blocks)
]
)
upsample = (
Upsample1D(output_channel, use_conv_transpose=True)
if not is_last
else nn.Conv1d(output_channel, output_channel, 3, padding=1)
)
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
self.final_block = Block1D(channels[-1], channels[-1])
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
self.initialize_weights()
def initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv1d):
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.GroupNorm):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x, mask, mu, t, spks=None, cond=None, streaming=False):
"""Forward pass of the UNet1DConditional model.
Args:
x (torch.Tensor): shape (batch_size, in_channels, time)
mask (_type_): shape (batch_size, 1, time)
t (_type_): shape (batch_size)
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
cond (_type_, optional): placeholder for future use. Defaults to None.
Raises:
ValueError: _description_
ValueError: _description_
Returns:
_type_: _description_
"""
t = self.time_embeddings(t).to(t.dtype)
t = self.time_mlp(t)
x = pack([x, mu], "b * t")[0]
if spks is not None:
spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
x = pack([x, spks], "b * t")[0]
if cond is not None:
x = pack([x, cond], "b * t")[0]
hiddens = []
masks = [mask]
for resnet, transformer_blocks, downsample in self.down_blocks:
mask_down = masks[-1]
x = resnet(x, mask_down, t)
x = rearrange(x, "b c t -> b t c").contiguous()
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
attn_mask = mask_to_bias(attn_mask, x.dtype)
for transformer_block in transformer_blocks:
x = transformer_block(
hidden_states=x,
attention_mask=attn_mask,
timestep=t,
)
x = rearrange(x, "b t c -> b c t").contiguous()
hiddens.append(x) # Save hidden states for skip connections
x = downsample(x * mask_down)
masks.append(mask_down[:, :, ::2])
masks = masks[:-1]
mask_mid = masks[-1]
for resnet, transformer_blocks in self.mid_blocks:
x = resnet(x, mask_mid, t)
x = rearrange(x, "b c t -> b t c").contiguous()
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
attn_mask = mask_to_bias(attn_mask, x.dtype)
for transformer_block in transformer_blocks:
x = transformer_block(
hidden_states=x,
attention_mask=attn_mask,
timestep=t,
)
x = rearrange(x, "b t c -> b c t").contiguous()
for resnet, transformer_blocks, upsample in self.up_blocks:
mask_up = masks.pop()
skip = hiddens.pop()
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
x = resnet(x, mask_up, t)
x = rearrange(x, "b c t -> b t c").contiguous()
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
attn_mask = mask_to_bias(attn_mask, x.dtype)
for transformer_block in transformer_blocks:
x = transformer_block(
hidden_states=x,
attention_mask=attn_mask,
timestep=t,
)
x = rearrange(x, "b t c -> b c t").contiguous()
x = upsample(x * mask_up)
x = self.final_block(x, mask_up)
output = self.final_proj(x * mask_up)
return output * mask
class CausalConditionalDecoder(ConditionalDecoder):
"""
This decoder requires an input with the same shape of the target. So, if your text content
is shorter or longer than the outputs, please re-sampling it before feeding to the decoder.
Args:
in_channels: number of input channels
out_channels: number of output channels
channels: list of channel dimensions
dropout: dropout rate
attention_head_dim: dimension of attention heads
n_blocks: number of transformer blocks
num_mid_blocks: number of middle blocks
num_heads: number of attention heads
act_fn: activation function name
static_chunk_size: size of static chunks
num_decoding_left_chunks: number of left chunks for decoding
"""
def __init__(
self,
in_channels=320,
out_channels=80,
channels=[256], # noqa
dropout=0.0,
attention_head_dim=64,
n_blocks=4,
num_mid_blocks=12,
num_heads=8,
act_fn="gelu",
static_chunk_size=50,
num_decoding_left_chunks=-1,
):
torch.nn.Module.__init__(self)
channels = tuple(channels)
self.in_channels = in_channels
self.out_channels = out_channels
self.time_embeddings = SinusoidalPosEmb(in_channels)
time_embed_dim = channels[0] * 4
self.time_mlp = TimestepEmbedding(
in_channels=in_channels,
time_embed_dim=time_embed_dim,
act_fn="silu",
)
self.static_chunk_size = static_chunk_size
self.num_decoding_left_chunks = num_decoding_left_chunks
self.down_blocks = nn.ModuleList([])
self.mid_blocks = nn.ModuleList([])
self.up_blocks = nn.ModuleList([])
output_channel = in_channels
for i in range(len(channels)): # pylint: disable=consider-using-enumerate
input_channel = output_channel
output_channel = channels[i]
is_last = i == len(channels) - 1
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
dim=output_channel,
num_attention_heads=num_heads,
attention_head_dim=attention_head_dim,
dropout=dropout,
activation_fn=act_fn,
)
for _ in range(n_blocks)
]
)
downsample = (
Downsample1D(output_channel) if not is_last else CausalConv1d(output_channel, output_channel, 3)
)
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
for _ in range(num_mid_blocks):
input_channel = channels[-1]
out_channels = channels[-1]
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
dim=output_channel,
num_attention_heads=num_heads,
attention_head_dim=attention_head_dim,
dropout=dropout,
activation_fn=act_fn,
)
for _ in range(n_blocks)
]
)
self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
channels = channels[::-1] + (channels[0],)
for i in range(len(channels) - 1):
input_channel = channels[i] * 2
output_channel = channels[i + 1]
is_last = i == len(channels) - 2
resnet = CausalResnetBlock1D(
dim=input_channel,
dim_out=output_channel,
time_emb_dim=time_embed_dim,
)
transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
dim=output_channel,
num_attention_heads=num_heads,
attention_head_dim=attention_head_dim,
dropout=dropout,
activation_fn=act_fn,
)
for _ in range(n_blocks)
]
)
upsample = (
Upsample1D(output_channel, use_conv_transpose=True)
if not is_last
else CausalConv1d(output_channel, output_channel, 3)
)
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
self.final_block = CausalBlock1D(channels[-1], channels[-1])
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
self.initialize_weights()
def forward(self, x, mask, mu, t, spks=None, cond=None, streaming=False):
"""Forward pass of the UNet1DConditional model.
Args:
x (torch.Tensor): shape (batch_size, in_channels, time)
mask (_type_): shape (batch_size, 1, time)
t (_type_): shape (batch_size)
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
cond (_type_, optional): placeholder for future use. Defaults to None.
Raises:
ValueError: _description_
ValueError: _description_
Returns:
_type_: _description_
"""
t = self.time_embeddings(t).to(t.dtype)
t = self.time_mlp(t)
x = pack([x, mu], "b * t")[0]
if spks is not None:
spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
x = pack([x, spks], "b * t")[0]
if cond is not None:
x = pack([x, cond], "b * t")[0]
hiddens = []
masks = [mask]
for resnet, transformer_blocks, downsample in self.down_blocks:
mask_down = masks[-1]
x = resnet(x, mask_down, t)
x = rearrange(x, "b c t -> b t c").contiguous()
if streaming is True:
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, self.static_chunk_size, -1)
else:
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
attn_mask = mask_to_bias(attn_mask, x.dtype)
for transformer_block in transformer_blocks:
x = transformer_block(
hidden_states=x,
attention_mask=attn_mask,
timestep=t,
)
x = rearrange(x, "b t c -> b c t").contiguous()
hiddens.append(x) # Save hidden states for skip connections
x = downsample(x * mask_down)
masks.append(mask_down[:, :, ::2])
masks = masks[:-1]
mask_mid = masks[-1]
for resnet, transformer_blocks in self.mid_blocks:
x = resnet(x, mask_mid, t)
x = rearrange(x, "b c t -> b t c").contiguous()
if streaming is True:
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, self.static_chunk_size, -1)
else:
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
attn_mask = mask_to_bias(attn_mask, x.dtype)
for transformer_block in transformer_blocks:
x = transformer_block(
hidden_states=x,
attention_mask=attn_mask,
timestep=t,
)
x = rearrange(x, "b t c -> b c t").contiguous()
for resnet, transformer_blocks, upsample in self.up_blocks:
mask_up = masks.pop()
skip = hiddens.pop()
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
x = resnet(x, mask_up, t)
x = rearrange(x, "b c t -> b t c").contiguous()
if streaming is True:
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, self.static_chunk_size, -1)
else:
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
attn_mask = mask_to_bias(attn_mask, x.dtype)
for transformer_block in transformer_blocks:
x = transformer_block(
hidden_states=x,
attention_mask=attn_mask,
timestep=t,
)
x = rearrange(x, "b t c -> b c t").contiguous()
x = upsample(x * mask_up)
x = self.final_block(x, mask_up)
output = self.final_proj(x * mask_up)
return output * mask