Spaces:
Running
on
Zero
Running
on
Zero
import math | |
from typing import Any, Dict, Optional, Tuple | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from diffusers.models.attention import (GEGLU, GELU, AdaLayerNorm, | |
AdaLayerNormZero, ApproximateGELU) | |
from diffusers.models.attention_processor import Attention | |
from diffusers.models.lora import LoRACompatibleLinear | |
from diffusers.utils.torch_utils import maybe_allow_in_graph | |
from einops import pack, rearrange, repeat | |
from flashcosyvoice.modules.flow_components.upsample_encoder import \ | |
add_optional_chunk_mask | |
def mask_to_bias(mask: torch.Tensor, dtype: torch.dtype) -> torch.Tensor: | |
assert mask.dtype == torch.bool | |
assert dtype in [torch.float32, torch.bfloat16, torch.float16] | |
mask = mask.to(dtype) | |
# attention mask bias | |
# NOTE(Mddct): torch.finfo jit issues | |
# chunk_masks = (1.0 - chunk_masks) * torch.finfo(dtype).min | |
mask = (1.0 - mask) * -1.0e+10 | |
return mask | |
class SnakeBeta(nn.Module): | |
""" | |
A modified Snake function which uses separate parameters for the magnitude of the periodic components | |
Shape: | |
- Input: (B, C, T) | |
- Output: (B, C, T), same shape as the input | |
Parameters: | |
- alpha - trainable parameter that controls frequency | |
- beta - trainable parameter that controls magnitude | |
References: | |
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda: | |
https://arxiv.org/abs/2006.08195 | |
Examples: | |
>>> a1 = snakebeta(256) | |
>>> x = torch.randn(256) | |
>>> x = a1(x) | |
Args: | |
in_features: shape of the input | |
out_features: shape of the output | |
alpha: trainable parameter that controls frequency | |
alpha_trainable: whether alpha is trainable | |
alpha_logscale: whether to use log scale for alpha | |
alpha is initialized to 1 by default, higher values = higher-frequency. | |
beta is initialized to 1 by default, higher values = higher-magnitude. | |
alpha will be trained along with the rest of your model. | |
""" | |
def __init__(self, in_features, out_features, alpha=1.0, alpha_trainable=True, alpha_logscale=True): | |
super().__init__() | |
self.in_features = out_features if isinstance(out_features, list) else [out_features] | |
self.proj = LoRACompatibleLinear(in_features, out_features) | |
# initialize alpha | |
self.alpha_logscale = alpha_logscale | |
if self.alpha_logscale: # log scale alphas initialized to zeros | |
self.alpha = nn.Parameter(torch.zeros(self.in_features) * alpha) | |
self.beta = nn.Parameter(torch.zeros(self.in_features) * alpha) | |
else: # linear scale alphas initialized to ones | |
self.alpha = nn.Parameter(torch.ones(self.in_features) * alpha) | |
self.beta = nn.Parameter(torch.ones(self.in_features) * alpha) | |
self.alpha.requires_grad = alpha_trainable | |
self.beta.requires_grad = alpha_trainable | |
self.no_div_by_zero = 0.000000001 | |
def forward(self, x): | |
""" | |
Forward pass of the function. | |
Applies the function to the input elementwise. | |
SnakeBeta ∶= x + 1/b * sin^2 (xa) | |
""" | |
x = self.proj(x) | |
if self.alpha_logscale: | |
alpha = torch.exp(self.alpha) | |
beta = torch.exp(self.beta) | |
else: | |
alpha = self.alpha | |
beta = self.beta | |
x = x + (1.0 / (beta + self.no_div_by_zero)) * torch.pow(torch.sin(x * alpha), 2) | |
return x | |
class FeedForward(nn.Module): | |
r""" | |
A feed-forward layer. | |
Parameters: | |
dim (`int`): The number of channels in the input. | |
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. | |
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
dim_out: Optional[int] = None, | |
mult: int = 4, | |
dropout: float = 0.0, | |
activation_fn: str = "geglu", | |
final_dropout: bool = False, | |
): | |
super().__init__() | |
inner_dim = int(dim * mult) | |
dim_out = dim_out if dim_out is not None else dim | |
if activation_fn == "gelu": | |
act_fn = GELU(dim, inner_dim) | |
if activation_fn == "gelu-approximate": | |
act_fn = GELU(dim, inner_dim, approximate="tanh") | |
elif activation_fn == "geglu": | |
act_fn = GEGLU(dim, inner_dim) | |
elif activation_fn == "geglu-approximate": | |
act_fn = ApproximateGELU(dim, inner_dim) | |
elif activation_fn == "snakebeta": | |
act_fn = SnakeBeta(dim, inner_dim) | |
self.net = nn.ModuleList([]) | |
# project in | |
self.net.append(act_fn) | |
# project dropout | |
self.net.append(nn.Dropout(dropout)) | |
# project out | |
self.net.append(LoRACompatibleLinear(inner_dim, dim_out)) | |
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout | |
if final_dropout: | |
self.net.append(nn.Dropout(dropout)) | |
def forward(self, hidden_states): | |
for module in self.net: | |
hidden_states = module(hidden_states) | |
return hidden_states | |
class BasicTransformerBlock(nn.Module): | |
r""" | |
A basic Transformer block. | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | |
only_cross_attention (`bool`, *optional*): | |
Whether to use only cross-attention layers. In this case two cross attention layers are used. | |
double_self_attention (`bool`, *optional*): | |
Whether to use two self-attention layers. In this case no cross attention layers are used. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
num_embeds_ada_norm (: | |
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. | |
attention_bias (: | |
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
double_self_attention: bool = False, | |
upcast_attention: bool = False, | |
norm_elementwise_affine: bool = True, | |
norm_type: str = "layer_norm", | |
final_dropout: bool = False, | |
): | |
super().__init__() | |
self.only_cross_attention = only_cross_attention | |
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" | |
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" | |
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: | |
raise ValueError( | |
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" | |
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." | |
) | |
# Define 3 blocks. Each block has its own normalization layer. | |
# 1. Self-Attn | |
if self.use_ada_layer_norm: | |
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
elif self.use_ada_layer_norm_zero: | |
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) | |
else: | |
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) | |
self.attn1 = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
) | |
# 2. Cross-Attn | |
if cross_attention_dim is not None or double_self_attention: | |
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block. | |
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during | |
# the second cross attention block. | |
self.norm2 = ( | |
AdaLayerNorm(dim, num_embeds_ada_norm) | |
if self.use_ada_layer_norm | |
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) | |
) | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim if not double_self_attention else None, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
# scale_qk=False, # uncomment this to not to use flash attention | |
) # is self-attn if encoder_hidden_states is none | |
else: | |
self.norm2 = None | |
self.attn2 = None | |
# 3. Feed-forward | |
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) | |
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout) | |
# let chunk size default to None | |
self._chunk_size = None | |
self._chunk_dim = 0 | |
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int): | |
# Sets chunk feed-forward | |
self._chunk_size = chunk_size | |
self._chunk_dim = dim | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
timestep: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
): | |
# Notice that normalization is always applied before the real computation in the following blocks. | |
# 1. Self-Attention | |
if self.use_ada_layer_norm: | |
norm_hidden_states = self.norm1(hidden_states, timestep) | |
elif self.use_ada_layer_norm_zero: | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | |
) | |
else: | |
norm_hidden_states = self.norm1(hidden_states) | |
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=encoder_attention_mask if self.only_cross_attention else attention_mask, | |
**cross_attention_kwargs, | |
) | |
if self.use_ada_layer_norm_zero: | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
hidden_states = attn_output + hidden_states | |
# 2. Cross-Attention | |
if self.attn2 is not None: | |
norm_hidden_states = ( | |
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) | |
) | |
attn_output = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
**cross_attention_kwargs, | |
) | |
hidden_states = attn_output + hidden_states | |
# 3. Feed-forward | |
norm_hidden_states = self.norm3(hidden_states) | |
if self.use_ada_layer_norm_zero: | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
if self._chunk_size is not None: | |
# "feed_forward_chunk_size" can be used to save memory | |
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: | |
raise ValueError( | |
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." | |
) | |
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size | |
ff_output = torch.cat( | |
[self.ff(hid_slice) for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)], | |
dim=self._chunk_dim, | |
) | |
else: | |
ff_output = self.ff(norm_hidden_states) | |
if self.use_ada_layer_norm_zero: | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
hidden_states = ff_output + hidden_states | |
return hidden_states | |
class SinusoidalPosEmb(torch.nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.dim = dim | |
assert self.dim % 2 == 0, "SinusoidalPosEmb requires dim to be even" | |
def forward(self, x, scale=1000): | |
if x.ndim < 1: | |
x = x.unsqueeze(0) | |
device = x.device | |
half_dim = self.dim // 2 | |
emb = math.log(10000) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb) | |
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0) | |
emb = torch.cat((emb.sin(), emb.cos()), dim=-1) | |
return emb | |
class Block1D(torch.nn.Module): | |
def __init__(self, dim, dim_out, groups=8): | |
super().__init__() | |
self.block = torch.nn.Sequential( | |
torch.nn.Conv1d(dim, dim_out, 3, padding=1), | |
torch.nn.GroupNorm(groups, dim_out), | |
nn.Mish(), | |
) | |
def forward(self, x, mask): | |
output = self.block(x * mask) | |
return output * mask | |
class ResnetBlock1D(torch.nn.Module): | |
def __init__(self, dim, dim_out, time_emb_dim, groups=8): | |
super().__init__() | |
self.mlp = torch.nn.Sequential(nn.Mish(), torch.nn.Linear(time_emb_dim, dim_out)) | |
self.block1 = Block1D(dim, dim_out, groups=groups) | |
self.block2 = Block1D(dim_out, dim_out, groups=groups) | |
self.res_conv = torch.nn.Conv1d(dim, dim_out, 1) | |
def forward(self, x, mask, time_emb): | |
h = self.block1(x, mask) | |
h += self.mlp(time_emb).unsqueeze(-1) | |
h = self.block2(h, mask) | |
output = h + self.res_conv(x * mask) | |
return output | |
class Downsample1D(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.conv = torch.nn.Conv1d(dim, dim, 3, 2, 1) | |
def forward(self, x): | |
return self.conv(x) | |
class TimestepEmbedding(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
time_embed_dim: int, | |
act_fn: str = "silu", | |
out_dim: int = None, | |
post_act_fn: Optional[str] = None, | |
cond_proj_dim=None, | |
): | |
super().__init__() | |
assert act_fn == "silu", "act_fn must be silu" | |
self.linear_1 = nn.Linear(in_channels, time_embed_dim) | |
if cond_proj_dim is not None: | |
self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False) | |
else: | |
self.cond_proj = None | |
self.act = nn.SiLU() | |
if out_dim is not None: | |
time_embed_dim_out = out_dim | |
else: | |
time_embed_dim_out = time_embed_dim | |
self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out) | |
if post_act_fn is None: | |
self.post_act = None | |
else: | |
self.post_act = nn.SiLU() | |
def forward(self, sample, condition=None): | |
if condition is not None: | |
sample = sample + self.cond_proj(condition) | |
sample = self.linear_1(sample) | |
if self.act is not None: | |
sample = self.act(sample) | |
sample = self.linear_2(sample) | |
if self.post_act is not None: | |
sample = self.post_act(sample) | |
return sample | |
class Upsample1D(nn.Module): | |
"""A 1D upsampling layer with an optional convolution. | |
Parameters: | |
channels (`int`): | |
number of channels in the inputs and outputs. | |
use_conv (`bool`, default `False`): | |
option to use a convolution. | |
use_conv_transpose (`bool`, default `False`): | |
option to use a convolution transpose. | |
out_channels (`int`, optional): | |
number of output channels. Defaults to `channels`. | |
""" | |
def __init__(self, channels, use_conv=False, use_conv_transpose=True, out_channels=None, name="conv"): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.use_conv_transpose = use_conv_transpose | |
self.name = name | |
self.conv = None | |
if use_conv_transpose: | |
self.conv = nn.ConvTranspose1d(channels, self.out_channels, 4, 2, 1) | |
elif use_conv: | |
self.conv = nn.Conv1d(self.channels, self.out_channels, 3, padding=1) | |
def forward(self, inputs): | |
assert inputs.shape[1] == self.channels | |
if self.use_conv_transpose: | |
return self.conv(inputs) | |
outputs = F.interpolate(inputs, scale_factor=2.0, mode="nearest") | |
if self.use_conv: | |
outputs = self.conv(outputs) | |
return outputs | |
class Transpose(torch.nn.Module): | |
def __init__(self, dim0: int, dim1: int): | |
super().__init__() | |
self.dim0 = dim0 | |
self.dim1 = dim1 | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = torch.transpose(x, self.dim0, self.dim1) | |
return x | |
class CausalConv1d(torch.nn.Conv1d): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: int, | |
stride: int = 1, | |
dilation: int = 1, | |
groups: int = 1, | |
bias: bool = True, | |
padding_mode: str = 'zeros', | |
device=None, | |
dtype=None | |
) -> None: | |
super(CausalConv1d, self).__init__(in_channels, out_channels, | |
kernel_size, stride, | |
padding=0, dilation=dilation, | |
groups=groups, bias=bias, | |
padding_mode=padding_mode, | |
device=device, dtype=dtype) | |
assert stride == 1 | |
self.causal_padding = kernel_size - 1 | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = F.pad(x, (self.causal_padding, 0), value=0.0) | |
x = super(CausalConv1d, self).forward(x) | |
return x | |
class CausalBlock1D(Block1D): | |
def __init__(self, dim: int, dim_out: int): | |
super(CausalBlock1D, self).__init__(dim, dim_out) | |
self.block = torch.nn.Sequential( | |
CausalConv1d(dim, dim_out, 3), | |
Transpose(1, 2), | |
nn.LayerNorm(dim_out), | |
Transpose(1, 2), | |
nn.Mish(), | |
) | |
def forward(self, x: torch.Tensor, mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | |
output = self.block(x * mask) | |
return output * mask | |
class CausalResnetBlock1D(ResnetBlock1D): | |
def __init__(self, dim: int, dim_out: int, time_emb_dim: int, groups: int = 8): | |
super(CausalResnetBlock1D, self).__init__(dim, dim_out, time_emb_dim, groups) | |
self.block1 = CausalBlock1D(dim, dim_out) | |
self.block2 = CausalBlock1D(dim_out, dim_out) | |
class ConditionalDecoder(nn.Module): | |
""" | |
This decoder requires an input with the same shape of the target. So, if your text content | |
is shorter or longer than the outputs, please re-sampling it before feeding to the decoder. | |
Args: | |
in_channels: number of input channels | |
out_channels: number of output channels | |
channels: tuple of channel dimensions | |
dropout: dropout rate | |
attention_head_dim: dimension of attention heads | |
n_blocks: number of transformer blocks | |
num_mid_blocks: number of middle blocks | |
num_heads: number of attention heads | |
act_fn: activation function name | |
""" | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
channels=(256, 256), | |
dropout=0.05, | |
attention_head_dim=64, | |
n_blocks=1, | |
num_mid_blocks=2, | |
num_heads=4, | |
act_fn="snake", | |
): | |
super().__init__() | |
channels = tuple(channels) | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.time_embeddings = SinusoidalPosEmb(in_channels) | |
time_embed_dim = channels[0] * 4 | |
self.time_mlp = TimestepEmbedding( | |
in_channels=in_channels, | |
time_embed_dim=time_embed_dim, | |
act_fn="silu", | |
) | |
self.down_blocks = nn.ModuleList([]) | |
self.mid_blocks = nn.ModuleList([]) | |
self.up_blocks = nn.ModuleList([]) | |
output_channel = in_channels | |
for i in range(len(channels)): # pylint: disable=consider-using-enumerate | |
input_channel = output_channel | |
output_channel = channels[i] | |
is_last = i == len(channels) - 1 | |
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) | |
transformer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock( | |
dim=output_channel, | |
num_attention_heads=num_heads, | |
attention_head_dim=attention_head_dim, | |
dropout=dropout, | |
activation_fn=act_fn, | |
) | |
for _ in range(n_blocks) | |
] | |
) | |
downsample = ( | |
Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1) | |
) | |
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample])) | |
for _ in range(num_mid_blocks): | |
input_channel = channels[-1] | |
out_channels = channels[-1] | |
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) | |
transformer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock( | |
dim=output_channel, | |
num_attention_heads=num_heads, | |
attention_head_dim=attention_head_dim, | |
dropout=dropout, | |
activation_fn=act_fn, | |
) | |
for _ in range(n_blocks) | |
] | |
) | |
self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks])) | |
channels = channels[::-1] + (channels[0],) | |
for i in range(len(channels) - 1): | |
input_channel = channels[i] * 2 | |
output_channel = channels[i + 1] | |
is_last = i == len(channels) - 2 | |
resnet = ResnetBlock1D( | |
dim=input_channel, | |
dim_out=output_channel, | |
time_emb_dim=time_embed_dim, | |
) | |
transformer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock( | |
dim=output_channel, | |
num_attention_heads=num_heads, | |
attention_head_dim=attention_head_dim, | |
dropout=dropout, | |
activation_fn=act_fn, | |
) | |
for _ in range(n_blocks) | |
] | |
) | |
upsample = ( | |
Upsample1D(output_channel, use_conv_transpose=True) | |
if not is_last | |
else nn.Conv1d(output_channel, output_channel, 3, padding=1) | |
) | |
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample])) | |
self.final_block = Block1D(channels[-1], channels[-1]) | |
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1) | |
self.initialize_weights() | |
def initialize_weights(self): | |
for m in self.modules(): | |
if isinstance(m, nn.Conv1d): | |
nn.init.kaiming_normal_(m.weight, nonlinearity="relu") | |
if m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.GroupNorm): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.Linear): | |
nn.init.kaiming_normal_(m.weight, nonlinearity="relu") | |
if m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
def forward(self, x, mask, mu, t, spks=None, cond=None, streaming=False): | |
"""Forward pass of the UNet1DConditional model. | |
Args: | |
x (torch.Tensor): shape (batch_size, in_channels, time) | |
mask (_type_): shape (batch_size, 1, time) | |
t (_type_): shape (batch_size) | |
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None. | |
cond (_type_, optional): placeholder for future use. Defaults to None. | |
Raises: | |
ValueError: _description_ | |
ValueError: _description_ | |
Returns: | |
_type_: _description_ | |
""" | |
t = self.time_embeddings(t).to(t.dtype) | |
t = self.time_mlp(t) | |
x = pack([x, mu], "b * t")[0] | |
if spks is not None: | |
spks = repeat(spks, "b c -> b c t", t=x.shape[-1]) | |
x = pack([x, spks], "b * t")[0] | |
if cond is not None: | |
x = pack([x, cond], "b * t")[0] | |
hiddens = [] | |
masks = [mask] | |
for resnet, transformer_blocks, downsample in self.down_blocks: | |
mask_down = masks[-1] | |
x = resnet(x, mask_down, t) | |
x = rearrange(x, "b c t -> b t c").contiguous() | |
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1) | |
attn_mask = mask_to_bias(attn_mask, x.dtype) | |
for transformer_block in transformer_blocks: | |
x = transformer_block( | |
hidden_states=x, | |
attention_mask=attn_mask, | |
timestep=t, | |
) | |
x = rearrange(x, "b t c -> b c t").contiguous() | |
hiddens.append(x) # Save hidden states for skip connections | |
x = downsample(x * mask_down) | |
masks.append(mask_down[:, :, ::2]) | |
masks = masks[:-1] | |
mask_mid = masks[-1] | |
for resnet, transformer_blocks in self.mid_blocks: | |
x = resnet(x, mask_mid, t) | |
x = rearrange(x, "b c t -> b t c").contiguous() | |
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1) | |
attn_mask = mask_to_bias(attn_mask, x.dtype) | |
for transformer_block in transformer_blocks: | |
x = transformer_block( | |
hidden_states=x, | |
attention_mask=attn_mask, | |
timestep=t, | |
) | |
x = rearrange(x, "b t c -> b c t").contiguous() | |
for resnet, transformer_blocks, upsample in self.up_blocks: | |
mask_up = masks.pop() | |
skip = hiddens.pop() | |
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0] | |
x = resnet(x, mask_up, t) | |
x = rearrange(x, "b c t -> b t c").contiguous() | |
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1) | |
attn_mask = mask_to_bias(attn_mask, x.dtype) | |
for transformer_block in transformer_blocks: | |
x = transformer_block( | |
hidden_states=x, | |
attention_mask=attn_mask, | |
timestep=t, | |
) | |
x = rearrange(x, "b t c -> b c t").contiguous() | |
x = upsample(x * mask_up) | |
x = self.final_block(x, mask_up) | |
output = self.final_proj(x * mask_up) | |
return output * mask | |
class CausalConditionalDecoder(ConditionalDecoder): | |
""" | |
This decoder requires an input with the same shape of the target. So, if your text content | |
is shorter or longer than the outputs, please re-sampling it before feeding to the decoder. | |
Args: | |
in_channels: number of input channels | |
out_channels: number of output channels | |
channels: list of channel dimensions | |
dropout: dropout rate | |
attention_head_dim: dimension of attention heads | |
n_blocks: number of transformer blocks | |
num_mid_blocks: number of middle blocks | |
num_heads: number of attention heads | |
act_fn: activation function name | |
static_chunk_size: size of static chunks | |
num_decoding_left_chunks: number of left chunks for decoding | |
""" | |
def __init__( | |
self, | |
in_channels=320, | |
out_channels=80, | |
channels=[256], # noqa | |
dropout=0.0, | |
attention_head_dim=64, | |
n_blocks=4, | |
num_mid_blocks=12, | |
num_heads=8, | |
act_fn="gelu", | |
static_chunk_size=50, | |
num_decoding_left_chunks=-1, | |
): | |
torch.nn.Module.__init__(self) | |
channels = tuple(channels) | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.time_embeddings = SinusoidalPosEmb(in_channels) | |
time_embed_dim = channels[0] * 4 | |
self.time_mlp = TimestepEmbedding( | |
in_channels=in_channels, | |
time_embed_dim=time_embed_dim, | |
act_fn="silu", | |
) | |
self.static_chunk_size = static_chunk_size | |
self.num_decoding_left_chunks = num_decoding_left_chunks | |
self.down_blocks = nn.ModuleList([]) | |
self.mid_blocks = nn.ModuleList([]) | |
self.up_blocks = nn.ModuleList([]) | |
output_channel = in_channels | |
for i in range(len(channels)): # pylint: disable=consider-using-enumerate | |
input_channel = output_channel | |
output_channel = channels[i] | |
is_last = i == len(channels) - 1 | |
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) | |
transformer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock( | |
dim=output_channel, | |
num_attention_heads=num_heads, | |
attention_head_dim=attention_head_dim, | |
dropout=dropout, | |
activation_fn=act_fn, | |
) | |
for _ in range(n_blocks) | |
] | |
) | |
downsample = ( | |
Downsample1D(output_channel) if not is_last else CausalConv1d(output_channel, output_channel, 3) | |
) | |
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample])) | |
for _ in range(num_mid_blocks): | |
input_channel = channels[-1] | |
out_channels = channels[-1] | |
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) | |
transformer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock( | |
dim=output_channel, | |
num_attention_heads=num_heads, | |
attention_head_dim=attention_head_dim, | |
dropout=dropout, | |
activation_fn=act_fn, | |
) | |
for _ in range(n_blocks) | |
] | |
) | |
self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks])) | |
channels = channels[::-1] + (channels[0],) | |
for i in range(len(channels) - 1): | |
input_channel = channels[i] * 2 | |
output_channel = channels[i + 1] | |
is_last = i == len(channels) - 2 | |
resnet = CausalResnetBlock1D( | |
dim=input_channel, | |
dim_out=output_channel, | |
time_emb_dim=time_embed_dim, | |
) | |
transformer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock( | |
dim=output_channel, | |
num_attention_heads=num_heads, | |
attention_head_dim=attention_head_dim, | |
dropout=dropout, | |
activation_fn=act_fn, | |
) | |
for _ in range(n_blocks) | |
] | |
) | |
upsample = ( | |
Upsample1D(output_channel, use_conv_transpose=True) | |
if not is_last | |
else CausalConv1d(output_channel, output_channel, 3) | |
) | |
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample])) | |
self.final_block = CausalBlock1D(channels[-1], channels[-1]) | |
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1) | |
self.initialize_weights() | |
def forward(self, x, mask, mu, t, spks=None, cond=None, streaming=False): | |
"""Forward pass of the UNet1DConditional model. | |
Args: | |
x (torch.Tensor): shape (batch_size, in_channels, time) | |
mask (_type_): shape (batch_size, 1, time) | |
t (_type_): shape (batch_size) | |
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None. | |
cond (_type_, optional): placeholder for future use. Defaults to None. | |
Raises: | |
ValueError: _description_ | |
ValueError: _description_ | |
Returns: | |
_type_: _description_ | |
""" | |
t = self.time_embeddings(t).to(t.dtype) | |
t = self.time_mlp(t) | |
x = pack([x, mu], "b * t")[0] | |
if spks is not None: | |
spks = repeat(spks, "b c -> b c t", t=x.shape[-1]) | |
x = pack([x, spks], "b * t")[0] | |
if cond is not None: | |
x = pack([x, cond], "b * t")[0] | |
hiddens = [] | |
masks = [mask] | |
for resnet, transformer_blocks, downsample in self.down_blocks: | |
mask_down = masks[-1] | |
x = resnet(x, mask_down, t) | |
x = rearrange(x, "b c t -> b t c").contiguous() | |
if streaming is True: | |
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, self.static_chunk_size, -1) | |
else: | |
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1) | |
attn_mask = mask_to_bias(attn_mask, x.dtype) | |
for transformer_block in transformer_blocks: | |
x = transformer_block( | |
hidden_states=x, | |
attention_mask=attn_mask, | |
timestep=t, | |
) | |
x = rearrange(x, "b t c -> b c t").contiguous() | |
hiddens.append(x) # Save hidden states for skip connections | |
x = downsample(x * mask_down) | |
masks.append(mask_down[:, :, ::2]) | |
masks = masks[:-1] | |
mask_mid = masks[-1] | |
for resnet, transformer_blocks in self.mid_blocks: | |
x = resnet(x, mask_mid, t) | |
x = rearrange(x, "b c t -> b t c").contiguous() | |
if streaming is True: | |
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, self.static_chunk_size, -1) | |
else: | |
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1) | |
attn_mask = mask_to_bias(attn_mask, x.dtype) | |
for transformer_block in transformer_blocks: | |
x = transformer_block( | |
hidden_states=x, | |
attention_mask=attn_mask, | |
timestep=t, | |
) | |
x = rearrange(x, "b t c -> b c t").contiguous() | |
for resnet, transformer_blocks, upsample in self.up_blocks: | |
mask_up = masks.pop() | |
skip = hiddens.pop() | |
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0] | |
x = resnet(x, mask_up, t) | |
x = rearrange(x, "b c t -> b t c").contiguous() | |
if streaming is True: | |
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, self.static_chunk_size, -1) | |
else: | |
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1) | |
attn_mask = mask_to_bias(attn_mask, x.dtype) | |
for transformer_block in transformer_blocks: | |
x = transformer_block( | |
hidden_states=x, | |
attention_mask=attn_mask, | |
timestep=t, | |
) | |
x = rearrange(x, "b t c -> b c t").contiguous() | |
x = upsample(x * mask_up) | |
x = self.final_block(x, mask_up) | |
output = self.final_proj(x * mask_up) | |
return output * mask | |