Steveeeeeeen's picture
Steveeeeeeen HF Staff
add model
7e6946d
from dataclasses import dataclass
import torch
import torch.nn as nn
import torch.nn.functional as F
from flashcosyvoice.modules.flow_components.estimator import \
CausalConditionalDecoder
from flashcosyvoice.modules.flow_components.upsample_encoder import (
UpsampleConformerEncoder, make_pad_mask)
# TODO(xcsong): make it configurable
@dataclass
class CfmParams:
sigma_min: float = 1e-6
solver: str = "euler"
t_scheduler: str = "cosine"
training_cfg_rate: float = 0.2
inference_cfg_rate: float = 0.7
class CausalConditionalCFM(torch.nn.Module):
def __init__(self, in_channels=320, cfm_params=CfmParams(), n_spks=1, spk_emb_dim=80, estimator: torch.nn.Module = None):
super().__init__()
self.n_feats = in_channels
self.n_spks = n_spks
self.spk_emb_dim = spk_emb_dim
self.solver = cfm_params.solver
if hasattr(cfm_params, "sigma_min"):
self.sigma_min = cfm_params.sigma_min
else:
self.sigma_min = 1e-4
self.t_scheduler = cfm_params.t_scheduler
self.training_cfg_rate = cfm_params.training_cfg_rate
self.inference_cfg_rate = cfm_params.inference_cfg_rate
in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0)
# Just change the architecture of the estimator here
self.estimator = CausalConditionalDecoder() if estimator is None else estimator
@torch.inference_mode()
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, streaming=False):
"""Forward diffusion
Args:
mu (torch.Tensor): output of encoder
shape: (batch_size, n_feats, mel_timesteps)
mask (torch.Tensor): output_mask
shape: (batch_size, 1, mel_timesteps)
n_timesteps (int): number of diffusion steps
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
spks (torch.Tensor, optional): speaker ids. Defaults to None.
shape: (batch_size, spk_emb_dim)
cond: Not used but kept for future purposes
Returns:
sample: generated mel-spectrogram
shape: (batch_size, n_feats, mel_timesteps)
"""
z = torch.randn_like(mu).to(mu.device).to(mu.dtype) * temperature
# fix prompt and overlap part mu and z
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
if self.t_scheduler == 'cosine':
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond, streaming=streaming), None
def solve_euler(self, x, t_span, mu, mask, spks, cond, streaming=False):
"""
Fixed euler solver for ODEs.
Args:
x (torch.Tensor): random noise
t_span (torch.Tensor): n_timesteps interpolated
shape: (n_timesteps + 1,)
mu (torch.Tensor): output of encoder
shape: (batch_size, n_feats, mel_timesteps)
mask (torch.Tensor): output_mask
shape: (batch_size, 1, mel_timesteps)
spks (torch.Tensor, optional): speaker ids. Defaults to None.
shape: (batch_size, spk_emb_dim)
cond: Not used but kept for future purposes
"""
batch_size = x.size(0)
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
# Or in future might add like a return_all_steps flag
sol = []
# Do not use concat, it may cause memory format changed and trt infer with wrong results!
# Create tensors with double batch size for CFG (conditional + unconditional)
x_in = torch.zeros([batch_size * 2, x.size(1), x.size(2)], device=x.device, dtype=x.dtype)
mask_in = torch.zeros([batch_size * 2, mask.size(1), mask.size(2)], device=x.device, dtype=x.dtype)
mu_in = torch.zeros([batch_size * 2, mu.size(1), mu.size(2)], device=x.device, dtype=x.dtype)
t_in = torch.zeros([batch_size * 2], device=x.device, dtype=x.dtype)
spks_in = torch.zeros([batch_size * 2, spks.size(1)], device=x.device, dtype=x.dtype)
cond_in = torch.zeros([batch_size * 2, cond.size(1), cond.size(2)], device=x.device, dtype=x.dtype)
for step in range(1, len(t_span)):
# Classifier-Free Guidance inference introduced in VoiceBox
# Copy conditional and unconditional input
x_in[:batch_size] = x
x_in[batch_size:] = x
mask_in[:batch_size] = mask
mask_in[batch_size:] = mask
mu_in[:batch_size] = mu
# Unconditional part remains 0
t_in.fill_(t)
spks_in[:batch_size] = spks
cond_in[:batch_size] = cond
dphi_dt = self.estimator(
x_in, mask_in,
mu_in, t_in,
spks_in,
cond_in,
streaming
)
dphi_dt, cfg_dphi_dt = torch.split(dphi_dt, [batch_size, batch_size], dim=0)
dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt)
x = x + dt * dphi_dt
t = t + dt
sol.append(x)
if step < len(t_span) - 1:
dt = t_span[step + 1] - t
return sol[-1].float()
class CausalMaskedDiffWithXvec(torch.nn.Module):
def __init__(
self,
input_size: int = 512,
output_size: int = 80,
spk_embed_dim: int = 192,
output_type: str = "mel",
vocab_size: int = 6561,
input_frame_rate: int = 25,
token_mel_ratio: int = 2,
pre_lookahead_len: int = 3,
encoder: torch.nn.Module = None,
decoder: torch.nn.Module = None,
):
super().__init__()
self.input_size = input_size
self.output_size = output_size
self.vocab_size = vocab_size
self.output_type = output_type
self.input_frame_rate = input_frame_rate
self.input_embedding = nn.Embedding(vocab_size, input_size)
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
self.encoder = UpsampleConformerEncoder() if encoder is None else encoder
self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
self.decoder = CausalConditionalCFM() if decoder is None else decoder
self.token_mel_ratio = token_mel_ratio
self.pre_lookahead_len = pre_lookahead_len
@torch.inference_mode()
def forward(self,
token,
token_len,
prompt_feat,
prompt_feat_len,
embedding,
streaming,
finalize):
# xvec projection
embedding = F.normalize(embedding, dim=1)
embedding = self.spk_embed_affine_layer(embedding)
# concat text and prompt_text
mask = (~make_pad_mask(token_len, max_len=token.shape[1])).unsqueeze(-1).to(embedding)
token = self.input_embedding(torch.clamp(token, min=0)) * mask
# text encode
if finalize is True:
h, h_lengths = self.encoder(token, token_len, streaming=streaming)
else:
token, context = token[:, :-self.pre_lookahead_len], token[:, -self.pre_lookahead_len:]
h, h_lengths = self.encoder(token, token_len, context=context, streaming=streaming)
h = self.encoder_proj(h)
# get conditions
conds = torch.zeros_like(h, device=token.device)
for i, j in enumerate(prompt_feat_len):
conds[i, :j] = prompt_feat[i, :j]
conds = conds.transpose(1, 2)
h_lengths = h_lengths.sum(dim=-1).squeeze(dim=1)
mask = (~make_pad_mask(h_lengths, max_len=h.shape[1])).to(h)
feat, _ = self.decoder(
mu=h.transpose(1, 2).contiguous(),
mask=mask.unsqueeze(1),
spks=embedding,
cond=conds,
n_timesteps=10,
streaming=streaming
) # [B, num_mels, T]
return feat.float(), h_lengths