|
import os |
|
import re |
|
import typing |
|
from typing import Literal, Optional, Tuple |
|
|
|
|
|
|
|
|
|
|
|
ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"} |
|
ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"}) |
|
|
|
|
|
def _is_true(value: Optional[str]) -> bool: |
|
if value is None: |
|
return False |
|
return value.upper() in ENV_VARS_TRUE_VALUES |
|
|
|
|
|
def _as_int(value: Optional[str]) -> Optional[int]: |
|
if value is None: |
|
return None |
|
return int(value) |
|
|
|
|
|
|
|
|
|
PYTORCH_WEIGHTS_NAME = "pytorch_model.bin" |
|
TF2_WEIGHTS_NAME = "tf_model.h5" |
|
TF_WEIGHTS_NAME = "model.ckpt" |
|
FLAX_WEIGHTS_NAME = "flax_model.msgpack" |
|
CONFIG_NAME = "config.json" |
|
REPOCARD_NAME = "README.md" |
|
DEFAULT_ETAG_TIMEOUT = 10 |
|
DEFAULT_DOWNLOAD_TIMEOUT = 10 |
|
DEFAULT_REQUEST_TIMEOUT = 10 |
|
DOWNLOAD_CHUNK_SIZE = 10 * 1024 * 1024 |
|
HF_TRANSFER_CONCURRENCY = 100 |
|
|
|
|
|
|
|
PYTORCH_WEIGHTS_FILE_PATTERN = "pytorch_model{suffix}.bin" |
|
SAFETENSORS_WEIGHTS_FILE_PATTERN = "model{suffix}.safetensors" |
|
TF2_WEIGHTS_FILE_PATTERN = "tf_model{suffix}.h5" |
|
|
|
|
|
|
|
SAFETENSORS_SINGLE_FILE = "model.safetensors" |
|
SAFETENSORS_INDEX_FILE = "model.safetensors.index.json" |
|
SAFETENSORS_MAX_HEADER_LENGTH = 25_000_000 |
|
|
|
|
|
FILELOCK_LOG_EVERY_SECONDS = 10 |
|
|
|
|
|
|
|
DEFAULT_REVISION = "main" |
|
REGEX_COMMIT_OID = re.compile(r"[A-Fa-f0-9]{5,40}") |
|
|
|
HUGGINGFACE_CO_URL_HOME = "https://huggingface.co/" |
|
|
|
_staging_mode = _is_true(os.environ.get("HUGGINGFACE_CO_STAGING")) |
|
|
|
_HF_DEFAULT_ENDPOINT = "https://huggingface.co" |
|
_HF_DEFAULT_STAGING_ENDPOINT = "https://hub-ci.huggingface.co" |
|
ENDPOINT = os.getenv("HF_ENDPOINT") or (_HF_DEFAULT_STAGING_ENDPOINT if _staging_mode else _HF_DEFAULT_ENDPOINT) |
|
|
|
HUGGINGFACE_CO_URL_TEMPLATE = ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" |
|
HUGGINGFACE_HEADER_X_REPO_COMMIT = "X-Repo-Commit" |
|
HUGGINGFACE_HEADER_X_LINKED_ETAG = "X-Linked-Etag" |
|
HUGGINGFACE_HEADER_X_LINKED_SIZE = "X-Linked-Size" |
|
|
|
INFERENCE_ENDPOINT = os.environ.get("HF_INFERENCE_ENDPOINT", "https://api-inference.huggingface.co") |
|
|
|
|
|
INFERENCE_ENDPOINTS_ENDPOINT = "https://api.endpoints.huggingface.cloud/v2" |
|
|
|
|
|
REPO_ID_SEPARATOR = "--" |
|
|
|
|
|
|
|
|
|
REPO_TYPE_DATASET = "dataset" |
|
REPO_TYPE_SPACE = "space" |
|
REPO_TYPE_MODEL = "model" |
|
REPO_TYPES = [None, REPO_TYPE_MODEL, REPO_TYPE_DATASET, REPO_TYPE_SPACE] |
|
SPACES_SDK_TYPES = ["gradio", "streamlit", "docker", "static"] |
|
|
|
REPO_TYPES_URL_PREFIXES = { |
|
REPO_TYPE_DATASET: "datasets/", |
|
REPO_TYPE_SPACE: "spaces/", |
|
} |
|
REPO_TYPES_MAPPING = { |
|
"datasets": REPO_TYPE_DATASET, |
|
"spaces": REPO_TYPE_SPACE, |
|
"models": REPO_TYPE_MODEL, |
|
} |
|
|
|
DiscussionTypeFilter = Literal["all", "discussion", "pull_request"] |
|
DISCUSSION_TYPES: Tuple[DiscussionTypeFilter, ...] = typing.get_args(DiscussionTypeFilter) |
|
DiscussionStatusFilter = Literal["all", "open", "closed"] |
|
DISCUSSION_STATUS: Tuple[DiscussionTypeFilter, ...] = typing.get_args(DiscussionStatusFilter) |
|
|
|
|
|
WEBHOOK_DOMAIN_T = Literal["repo", "discussions"] |
|
|
|
|
|
default_home = os.path.join(os.path.expanduser("~"), ".cache") |
|
HF_HOME = os.path.expanduser( |
|
os.getenv( |
|
"HF_HOME", |
|
os.path.join(os.getenv("XDG_CACHE_HOME", default_home), "huggingface"), |
|
) |
|
) |
|
hf_cache_home = HF_HOME |
|
|
|
default_cache_path = os.path.join(HF_HOME, "hub") |
|
default_assets_cache_path = os.path.join(HF_HOME, "assets") |
|
|
|
|
|
HUGGINGFACE_HUB_CACHE = os.getenv("HUGGINGFACE_HUB_CACHE", default_cache_path) |
|
HUGGINGFACE_ASSETS_CACHE = os.getenv("HUGGINGFACE_ASSETS_CACHE", default_assets_cache_path) |
|
|
|
|
|
HF_HUB_CACHE = os.getenv("HF_HUB_CACHE", HUGGINGFACE_HUB_CACHE) |
|
HF_ASSETS_CACHE = os.getenv("HF_ASSETS_CACHE", HUGGINGFACE_ASSETS_CACHE) |
|
|
|
HF_HUB_OFFLINE = _is_true(os.environ.get("HF_HUB_OFFLINE") or os.environ.get("TRANSFORMERS_OFFLINE")) |
|
|
|
|
|
HF_HUB_DISABLE_TELEMETRY = ( |
|
_is_true(os.environ.get("HF_HUB_DISABLE_TELEMETRY")) |
|
or _is_true(os.environ.get("DISABLE_TELEMETRY")) |
|
or _is_true(os.environ.get("DO_NOT_TRACK")) |
|
) |
|
|
|
|
|
|
|
|
|
_OLD_HF_TOKEN_PATH = os.path.expanduser("~/.huggingface/token") |
|
HF_TOKEN_PATH = os.environ.get("HF_TOKEN_PATH", os.path.join(HF_HOME, "token")) |
|
HF_STORED_TOKENS_PATH = os.path.join(os.path.dirname(HF_TOKEN_PATH), "stored_tokens") |
|
|
|
if _staging_mode: |
|
|
|
_staging_home = os.path.join(os.path.expanduser("~"), ".cache", "huggingface_staging") |
|
HUGGINGFACE_HUB_CACHE = os.path.join(_staging_home, "hub") |
|
_OLD_HF_TOKEN_PATH = os.path.join(_staging_home, "_old_token") |
|
HF_TOKEN_PATH = os.path.join(_staging_home, "token") |
|
|
|
|
|
|
|
|
|
|
|
|
|
__HF_HUB_DISABLE_PROGRESS_BARS = os.environ.get("HF_HUB_DISABLE_PROGRESS_BARS") |
|
HF_HUB_DISABLE_PROGRESS_BARS: Optional[bool] = ( |
|
_is_true(__HF_HUB_DISABLE_PROGRESS_BARS) if __HF_HUB_DISABLE_PROGRESS_BARS is not None else None |
|
) |
|
|
|
|
|
HF_HUB_DISABLE_SYMLINKS_WARNING: bool = _is_true(os.environ.get("HF_HUB_DISABLE_SYMLINKS_WARNING")) |
|
|
|
|
|
HF_HUB_DISABLE_EXPERIMENTAL_WARNING: bool = _is_true(os.environ.get("HF_HUB_DISABLE_EXPERIMENTAL_WARNING")) |
|
|
|
|
|
HF_HUB_DISABLE_IMPLICIT_TOKEN: bool = _is_true(os.environ.get("HF_HUB_DISABLE_IMPLICIT_TOKEN")) |
|
|
|
|
|
|
|
|
|
|
|
HF_HUB_ENABLE_HF_TRANSFER: bool = _is_true(os.environ.get("HF_HUB_ENABLE_HF_TRANSFER")) |
|
|
|
|
|
|
|
|
|
HF_HUB_LOCAL_DIR_AUTO_SYMLINK_THRESHOLD: int = ( |
|
_as_int(os.environ.get("HF_HUB_LOCAL_DIR_AUTO_SYMLINK_THRESHOLD")) or 5 * 1024 * 1024 |
|
) |
|
|
|
|
|
HF_HUB_ETAG_TIMEOUT: int = _as_int(os.environ.get("HF_HUB_ETAG_TIMEOUT")) or DEFAULT_ETAG_TIMEOUT |
|
|
|
|
|
HF_HUB_DOWNLOAD_TIMEOUT: int = _as_int(os.environ.get("HF_HUB_DOWNLOAD_TIMEOUT")) or DEFAULT_DOWNLOAD_TIMEOUT |
|
|
|
|
|
|
|
|
|
MAIN_INFERENCE_API_FRAMEWORKS = [ |
|
"diffusers", |
|
"sentence-transformers", |
|
"text-generation-inference", |
|
"transformers", |
|
] |
|
|
|
ALL_INFERENCE_API_FRAMEWORKS = MAIN_INFERENCE_API_FRAMEWORKS + [ |
|
"adapter-transformers", |
|
"allennlp", |
|
"asteroid", |
|
"bertopic", |
|
"doctr", |
|
"espnet", |
|
"fairseq", |
|
"fastai", |
|
"fasttext", |
|
"flair", |
|
"k2", |
|
"keras", |
|
"mindspore", |
|
"nemo", |
|
"open_clip", |
|
"paddlenlp", |
|
"peft", |
|
"pyannote-audio", |
|
"sklearn", |
|
"spacy", |
|
"span-marker", |
|
"speechbrain", |
|
"stanza", |
|
"timm", |
|
] |
|
|