neuralworm's picture
implement yt-dlp
6101aae verified
raw
history blame
2.38 kB
import whisper
import yt_dlp
import gradio as gr
import os
import re
model = whisper.load_model("base")
def get_audio(url):
try:
ydl_opts = {
'format': 'bestaudio/best',
'noplaylist': True,
'quiet': True,
'outtmpl': '%(title)s.%(ext)s' # Specify output template to get the file path
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(url, download=True)
# Use 'requested_downloads' to get the downloaded file path
audio_file = ydl.prepare_filename(info)
return audio_file
except Exception as e:
raise gr.Error(f"Exception: {e}")
def get_text(url):
try:
if url != '':
audio_file = get_audio(url)
result = model.transcribe(audio_file)
return result['text'].strip()
else:
return "Please enter a YouTube video URL."
except Exception as e:
raise gr.Error(f"Exception: {e}")
def get_summary(article):
try:
first_sentences = ' '.join(re.split(r'(?<=[.:;])\s', article)[:5])
return first_sentences
except Exception as e:
raise gr.Error(f"Exception: {e}")
with gr.Blocks() as demo:
gr.Markdown("<h1><center>Free Fast YouTube URL Video-to-Text using <a href=https://openai.com/blog/whisper/ target=_blank>OpenAI's Whisper</a> Model</center></h1>")
gr.Markdown("<center>Enter the link of any YouTube video to generate a text transcript of the video.</center>")
gr.Markdown("<center><b>'Whisper is a neural net that approaches human level robustness and accuracy on English speech recognition.'</b></center>")
gr.Markdown("<center>Transcription takes 5-10 seconds per minute of the video (bad audio/hard accents slow it down a bit). #patience<br />If you have time while waiting, check out my <a href=https://www.artificial-intelligence.blog target=_blank>AI blog</a> (opens in new tab).</center>")
input_text_url = gr.Textbox(placeholder='Youtube video URL', label='URL')
result_button_transcribe = gr.Button('1. Transcribe')
output_text_transcribe = gr.Textbox(placeholder='Transcript of the YouTube video.', label='Transcript')
result_button_transcribe.click(get_text, inputs=input_text_url, outputs=output_text_transcribe)
demo.queue(default_enabled=True).launch(debug=True)