neuralworm commited on
Commit
6101aae
1 Parent(s): 4a71c2c

implement yt-dlp

Browse files
Files changed (1) hide show
  1. app.py +37 -43
app.py CHANGED
@@ -1,61 +1,55 @@
1
  import whisper
2
- from pytube import YouTube
3
  import gradio as gr
4
  import os
5
  import re
6
- import logging
7
 
8
- logging.basicConfig(level=logging.INFO)
9
  model = whisper.load_model("base")
10
 
11
- def get_text(url):
12
- #try:
13
- if url != '':
14
- output_text_transcribe = ''
15
-
16
- yt = YouTube(url)
17
- #video_length = yt.length --- doesn't work anymore - using byte file size of the audio file instead now
18
- #if video_length < 5400:
19
- video = yt.streams.filter(only_audio=True).first()
20
- out_file=video.download(output_path=".")
 
 
 
 
 
21
 
22
- file_stats = os.stat(out_file)
23
- logging.info(f'Size of audio file in Bytes: {file_stats.st_size}')
24
-
25
- if file_stats.st_size <= 30000000:
26
- base, ext = os.path.splitext(out_file)
27
- new_file = base+'.mp3'
28
- os.rename(out_file, new_file)
29
- a = new_file
30
-
31
- result = model.transcribe(a)
32
- return result['text'].strip()
33
- else:
34
- logging.error('Videos for transcription on this space are limited to about 1.5 hours. Sorry about this limit but some joker thought they could stop this tool from working by transcribing many extremely long videos. Please visit https://steve.digital to contact me about this space.')
35
- #finally:
36
- # raise gr.Error("Exception: There was a problem transcribing the audio.")
37
 
38
  def get_summary(article):
39
- first_sentences = ' '.join(re.split(r'(?<=[.:;])\s', article)[:5])
40
- b = summarizer(first_sentences, min_length = 20, max_length = 120, do_sample = False)
41
- b = b[0]['summary_text'].replace(' .', '.').strip()
42
- return b
 
43
 
44
  with gr.Blocks() as demo:
45
  gr.Markdown("<h1><center>Free Fast YouTube URL Video-to-Text using <a href=https://openai.com/blog/whisper/ target=_blank>OpenAI's Whisper</a> Model</center></h1>")
46
- #gr.Markdown("<center>Enter the link of any YouTube video to generate a text transcript of the video and then create a summary of the video transcript.</center>")
47
  gr.Markdown("<center>Enter the link of any YouTube video to generate a text transcript of the video.</center>")
48
  gr.Markdown("<center><b>'Whisper is a neural net that approaches human level robustness and accuracy on English speech recognition.'</b></center>")
49
- gr.Markdown("<center>Transcription takes 5-10 seconds per minute of the video (bad audio/hard accents slow it down a bit). #patience<br />If you have time while waiting, drop a ♥️ and check out my <a href=https://www.artificial-intelligence.blog target=_blank>AI blog</a> (opens in new tab).</center>")
50
 
51
- input_text_url = gr.Textbox(placeholder='Youtube video URL', label='YouTube URL')
52
- result_button_transcribe = gr.Button('Transcribe')
53
  output_text_transcribe = gr.Textbox(placeholder='Transcript of the YouTube video.', label='Transcript')
54
-
55
- #result_button_summary = gr.Button('2. Create Summary')
56
- #output_text_summary = gr.Textbox(placeholder='Summary of the YouTube video transcript.', label='Summary')
57
-
58
- result_button_transcribe.click(get_text, inputs = input_text_url, outputs = output_text_transcribe)
59
- #result_button_summary.click(get_summary, inputs = output_text_transcribe, outputs = output_text_summary)
60
 
61
- demo.queue(default_enabled = True).launch(debug = True)
 
 
 
1
  import whisper
2
+ import yt_dlp
3
  import gradio as gr
4
  import os
5
  import re
 
6
 
 
7
  model = whisper.load_model("base")
8
 
9
+ def get_audio(url):
10
+ try:
11
+ ydl_opts = {
12
+ 'format': 'bestaudio/best',
13
+ 'noplaylist': True,
14
+ 'quiet': True,
15
+ 'outtmpl': '%(title)s.%(ext)s' # Specify output template to get the file path
16
+ }
17
+ with yt_dlp.YoutubeDL(ydl_opts) as ydl:
18
+ info = ydl.extract_info(url, download=True)
19
+ # Use 'requested_downloads' to get the downloaded file path
20
+ audio_file = ydl.prepare_filename(info)
21
+ return audio_file
22
+ except Exception as e:
23
+ raise gr.Error(f"Exception: {e}")
24
 
25
+ def get_text(url):
26
+ try:
27
+ if url != '':
28
+ audio_file = get_audio(url)
29
+ result = model.transcribe(audio_file)
30
+ return result['text'].strip()
31
+ else:
32
+ return "Please enter a YouTube video URL."
33
+ except Exception as e:
34
+ raise gr.Error(f"Exception: {e}")
 
 
 
 
 
35
 
36
  def get_summary(article):
37
+ try:
38
+ first_sentences = ' '.join(re.split(r'(?<=[.:;])\s', article)[:5])
39
+ return first_sentences
40
+ except Exception as e:
41
+ raise gr.Error(f"Exception: {e}")
42
 
43
  with gr.Blocks() as demo:
44
  gr.Markdown("<h1><center>Free Fast YouTube URL Video-to-Text using <a href=https://openai.com/blog/whisper/ target=_blank>OpenAI's Whisper</a> Model</center></h1>")
 
45
  gr.Markdown("<center>Enter the link of any YouTube video to generate a text transcript of the video.</center>")
46
  gr.Markdown("<center><b>'Whisper is a neural net that approaches human level robustness and accuracy on English speech recognition.'</b></center>")
47
+ gr.Markdown("<center>Transcription takes 5-10 seconds per minute of the video (bad audio/hard accents slow it down a bit). #patience<br />If you have time while waiting, check out my <a href=https://www.artificial-intelligence.blog target=_blank>AI blog</a> (opens in new tab).</center>")
48
 
49
+ input_text_url = gr.Textbox(placeholder='Youtube video URL', label='URL')
50
+ result_button_transcribe = gr.Button('1. Transcribe')
51
  output_text_transcribe = gr.Textbox(placeholder='Transcript of the YouTube video.', label='Transcript')
 
 
 
 
 
 
52
 
53
+ result_button_transcribe.click(get_text, inputs=input_text_url, outputs=output_text_transcribe)
54
+
55
+ demo.queue(default_enabled=True).launch(debug=True)