Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
from PIL import Image | |
import numpy as np | |
import cv2 | |
import matplotlib.pyplot as plt | |
import io | |
# Fonctions de traitement d'image | |
def load_image(image): | |
return image | |
def apply_negative(image): | |
img_np = np.array(image) | |
negative = 255 - img_np | |
return Image.fromarray(negative) | |
def grayscale(image): | |
return image.convert('L') | |
def binarize_image(image, threshold): | |
img_np = np.array(image.convert('L')) | |
_, binary = cv2.threshold(img_np, threshold, 255, cv2.THRESH_BINARY) | |
return Image.fromarray(binary) | |
def resize_image(image, width, height): | |
width = int(width) | |
height = int(height) | |
return image.resize((width, height)) | |
def rotate_image(image, angle): | |
return image.rotate(angle) | |
def show_histogram(image): | |
image_gray = image.convert("L") | |
# Obtenir les données de l'image en niveaux de gris | |
image_array = np.array(image_gray) | |
# Calculer l'histogramme | |
hist, bins = np.histogram(image_array.flatten(), bins=256, range=[0,256]) | |
# Créer une figure pour l'affichage de l'histogramme | |
fig, ax = plt.subplots() | |
ax.plot(hist, color='blue') | |
ax.set_xlim([0, 256]) | |
ax.set_title('Histogram of Image') | |
# Enregistrer l'histogramme dans un buffer | |
buf = io.BytesIO() | |
plt.savefig(buf, format='png') | |
buf.seek(0) | |
# Ouvrir l'image du buffer en utilisant PIL | |
hist_image = Image.open(buf) | |
return hist_image | |
def gaussian_filter(image, shape=(3, 3)): | |
image = np.array(image) | |
filtered = cv2.GaussianBlur(image, shape, 0) | |
return Image.fromarray(filtered) | |
def mean_filter(image, shape=(3, 3)): | |
image = np.array(image) | |
filtered = cv2.blur(image, shape) | |
return Image.fromarray(filtered) | |
def sobel_edges(image, k=5): | |
k = int(k) | |
image = np.array(image.convert('L')) | |
sobel_x = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=k) | |
sobel_y = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=k) | |
sobel_combined = cv2.magnitude(sobel_x, sobel_y) | |
return Image.fromarray(np.uint8(sobel_combined)) | |
def erosion(image, iterations=3, shape=(5, 5)): | |
iterations = int(iterations) | |
image = np.array(image.convert("L")) | |
kernel = np.ones(shape, np.uint8) | |
eroded_image = cv2.erode(image, kernel, iterations=iterations) | |
return Image.fromarray(eroded_image) | |
def dilatation(image, iterations=3, shape=(5, 5)): | |
iterations = int(iterations) | |
image = np.array(image.convert("L")) | |
kernel = np.ones(shape, np.uint8) | |
dilated_image = cv2.dilate(image, kernel, iterations=iterations) | |
return Image.fromarray(dilated_image) | |
# Interface Gradio | |
def image_processing(image, operation, modified_image, threshold=128, width=100, height=100, angle=30, k=5, iterations=3): | |
current_image = modified_image if modified_image is not None else image | |
if operation == "Négatif": | |
current_image = apply_negative(image) | |
elif operation == "Image en Gris": | |
current_image = grayscale(image) | |
elif operation == "Binarisation": | |
current_image = binarize_image(image, threshold) | |
elif operation == "Redimensionner": | |
current_image = resize_image(image, width, height) | |
elif operation == "Rotation": | |
current_image = rotate_image(image, angle) | |
elif operation == 'Filtre Gaussien': | |
current_image = gaussian_filter(image) | |
elif operation == 'Filtre Moyen': | |
current_image = mean_filter(image) | |
elif operation == 'Sobel Edges Extraction': | |
current_image = sobel_edges(image, k) | |
elif operation == 'Erosion': | |
current_image = erosion(image, iterations) | |
elif operation == 'Dilatation': | |
current_image = dilatation(image, iterations) | |
return current_image, show_histogram(current_image) | |
# Interface Gradio | |
with gr.Blocks() as demo: | |
gr.Markdown("## Traitement d'Images") | |
with gr.Row(): | |
operation = gr.Radio(["Négatif", "Image en Gris", "Binarisation", "Redimensionner", "Rotation", 'Filtre Gaussien', | |
'Filtre Moyen', 'Sobel Edges Extraction', 'Erosion', 'Dilatation'], label="Opération", value="Négatif") | |
with gr.Row(): | |
threshold = gr.Slider(0, 255, 128, label="Seuil de binarisation", visible=False) | |
width = gr.Number(value=100, label="Largeur", visible=False) | |
height = gr.Number(value=100, label="Hauteur", visible=False) | |
angle = gr.Slider(0, 360, 30, label="Angle de Rotation", visible=False) | |
k = gr.Number(value=5, label="k de Sobel", visible=False) | |
iterations = gr.Number(value=3, label="Nombre d'iteration pour les transformations morphologiques", visible=False) | |
def update_ui(operation): | |
# Mise à jour dynamique de la visibilité des champs | |
return { | |
threshold: gr.update(visible=operation == "Binarisation"), | |
width: gr.update(visible=operation == "Redimensionner"), | |
height: gr.update(visible=operation == "Redimensionner"), | |
angle: gr.update(visible=operation == "Rotation"), | |
k: gr.update(visible=operation == "Sobel Edges Extraction"), | |
iterations: gr.update(visible=operation in ["Erosion", "Dilatation"]) | |
} | |
operation.change(update_ui, operation, [threshold, width, height, angle, k, iterations]) | |
with gr.Row(): | |
image_input = gr.Image(type="pil", label="Charger Image", scale=2) | |
original_hist = gr.Image(label="Histogramme de l'Image Originale", scale=1) | |
with gr.Row(): | |
image_output = gr.Image(type="pil", label="Image Modifiée", interactive=False) | |
modified_hist = gr.Image(label="Histogramme de l'Image Modifiée", scale=1) | |
# Afficher l'histogramme de l'image d'entrée | |
def s_hist(image): | |
return show_histogram(image) | |
image_input.change(s_hist, inputs=image_input, outputs=original_hist) | |
submit_button = gr.Button("Appliquer") | |
submit_button.click(image_processing, inputs=[image_input, operation, image_output, threshold, width, height, angle, k, iterations], outputs=[image_output, modified_hist]) | |
# Lancer l'application Gradio | |
demo.launch() | |