Spaces:
Sleeping
Sleeping
v2
Browse files
app.py
CHANGED
|
@@ -4,6 +4,7 @@ from PIL import Image
|
|
| 4 |
import numpy as np
|
| 5 |
import cv2
|
| 6 |
import matplotlib.pyplot as plt
|
|
|
|
| 7 |
|
| 8 |
# Fonctions de traitement d'image
|
| 9 |
def load_image(image):
|
|
@@ -22,98 +23,134 @@ def binarize_image(image, threshold):
|
|
| 22 |
_, binary = cv2.threshold(img_np, threshold, 255, cv2.THRESH_BINARY)
|
| 23 |
return Image.fromarray(binary)
|
| 24 |
|
| 25 |
-
def resize_image(image, width
|
|
|
|
|
|
|
| 26 |
return image.resize((width, height))
|
| 27 |
|
| 28 |
def rotate_image(image, angle):
|
| 29 |
return image.rotate(angle)
|
| 30 |
|
| 31 |
def show_histogram(image):
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
plt.
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
image = np.array(image)
|
| 42 |
filtered = cv2.GaussianBlur(image, shape, 0)
|
| 43 |
return Image.fromarray(filtered)
|
| 44 |
|
| 45 |
-
def mean_filter(image, shape=(3,3)):
|
| 46 |
image = np.array(image)
|
| 47 |
filtered = cv2.blur(image, shape)
|
| 48 |
return Image.fromarray(filtered)
|
| 49 |
|
| 50 |
def sobel_edges(image, k=5):
|
|
|
|
| 51 |
image = np.array(image.convert('L'))
|
| 52 |
sobel_x = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=k)
|
| 53 |
sobel_y = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=k)
|
| 54 |
sobel_combined = cv2.magnitude(sobel_x, sobel_y)
|
| 55 |
return Image.fromarray(np.uint8(sobel_combined))
|
| 56 |
|
| 57 |
-
def erosion(image,
|
|
|
|
| 58 |
image = np.array(image.convert("L"))
|
| 59 |
-
kernel = np.ones(
|
| 60 |
eroded_image = cv2.erode(image, kernel, iterations=iterations)
|
| 61 |
return Image.fromarray(eroded_image)
|
| 62 |
|
| 63 |
-
def dilatation(image,
|
|
|
|
| 64 |
image = np.array(image.convert("L"))
|
| 65 |
-
kernel = np.ones(
|
| 66 |
dilated_image = cv2.dilate(image, kernel, iterations=iterations)
|
| 67 |
return Image.fromarray(dilated_image)
|
| 68 |
|
| 69 |
|
| 70 |
-
# Ajoutez d'autres fonctions pour l'histogramme, le filtrage, Sobel, etc.
|
| 71 |
-
|
| 72 |
# Interface Gradio
|
| 73 |
-
def image_processing(image, operation, threshold=128, width=100, height=100, angle=30,
|
|
|
|
| 74 |
if operation == "Négatif":
|
| 75 |
-
|
| 76 |
elif operation == "Image en Gris":
|
| 77 |
-
|
| 78 |
elif operation == "Binarisation":
|
| 79 |
-
|
| 80 |
elif operation == "Redimensionner":
|
| 81 |
-
|
| 82 |
elif operation == "Rotation":
|
| 83 |
-
|
| 84 |
-
elif operation == 'Histogramme de Gris':
|
| 85 |
-
return show_histogram(image)
|
| 86 |
elif operation == 'Filtre Gaussien':
|
| 87 |
-
|
| 88 |
elif operation == 'Filtre Moyen':
|
| 89 |
-
|
| 90 |
elif operation == 'Sobel Edges Extraction':
|
| 91 |
-
|
| 92 |
elif operation == 'Erosion':
|
| 93 |
-
|
| 94 |
elif operation == 'Dilatation':
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
return
|
| 98 |
|
| 99 |
# Interface Gradio
|
| 100 |
with gr.Blocks() as demo:
|
| 101 |
-
gr.Markdown("##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
with gr.Row():
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
threshold = gr.Slider(0, 255, 128, label="Seuil de binarisation", visible=True)
|
| 107 |
-
width = gr.Number(value=100, label="Largeur", visible=True)
|
| 108 |
-
height = gr.Number(value=100, label="Hauteur", visible=True)
|
| 109 |
-
angle = gr.Slider(0, 360, 30, label="Angle de Rotation", visible=True)
|
| 110 |
-
k = gr.Number(value=5, label="k de Sobel", visible=True)
|
| 111 |
-
iterations = gr.Number(value=3, label="Nombre d'iteration pour les transformations morphologiques", visible=True)
|
| 112 |
with gr.Row():
|
| 113 |
-
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
submit_button = gr.Button("Appliquer")
|
| 116 |
-
submit_button.click(image_processing, inputs=[image_input, operation, threshold, width, height, angle], outputs=image_output)
|
| 117 |
|
| 118 |
# Lancer l'application Gradio
|
| 119 |
demo.launch()
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
import cv2
|
| 6 |
import matplotlib.pyplot as plt
|
| 7 |
+
import io
|
| 8 |
|
| 9 |
# Fonctions de traitement d'image
|
| 10 |
def load_image(image):
|
|
|
|
| 23 |
_, binary = cv2.threshold(img_np, threshold, 255, cv2.THRESH_BINARY)
|
| 24 |
return Image.fromarray(binary)
|
| 25 |
|
| 26 |
+
def resize_image(image, width, height):
|
| 27 |
+
width = int(width)
|
| 28 |
+
height = int(height)
|
| 29 |
return image.resize((width, height))
|
| 30 |
|
| 31 |
def rotate_image(image, angle):
|
| 32 |
return image.rotate(angle)
|
| 33 |
|
| 34 |
def show_histogram(image):
|
| 35 |
+
image_gray = image.convert("L")
|
| 36 |
+
# Obtenir les données de l'image en niveaux de gris
|
| 37 |
+
image_array = np.array(image_gray)
|
| 38 |
+
# Calculer l'histogramme
|
| 39 |
+
hist, bins = np.histogram(image_array.flatten(), bins=256, range=[0,256])
|
| 40 |
+
# Créer une figure pour l'affichage de l'histogramme
|
| 41 |
+
fig, ax = plt.subplots()
|
| 42 |
+
ax.plot(hist, color='blue')
|
| 43 |
+
ax.set_xlim([0, 256])
|
| 44 |
+
ax.set_title('Histogram of Image')
|
| 45 |
+
# Enregistrer l'histogramme dans un buffer
|
| 46 |
+
buf = io.BytesIO()
|
| 47 |
+
plt.savefig(buf, format='png')
|
| 48 |
+
buf.seek(0)
|
| 49 |
+
# Ouvrir l'image du buffer en utilisant PIL
|
| 50 |
+
hist_image = Image.open(buf)
|
| 51 |
+
return hist_image
|
| 52 |
+
|
| 53 |
+
def gaussian_filter(image, shape=(3, 3)):
|
| 54 |
image = np.array(image)
|
| 55 |
filtered = cv2.GaussianBlur(image, shape, 0)
|
| 56 |
return Image.fromarray(filtered)
|
| 57 |
|
| 58 |
+
def mean_filter(image, shape=(3, 3)):
|
| 59 |
image = np.array(image)
|
| 60 |
filtered = cv2.blur(image, shape)
|
| 61 |
return Image.fromarray(filtered)
|
| 62 |
|
| 63 |
def sobel_edges(image, k=5):
|
| 64 |
+
k = int(k)
|
| 65 |
image = np.array(image.convert('L'))
|
| 66 |
sobel_x = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=k)
|
| 67 |
sobel_y = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=k)
|
| 68 |
sobel_combined = cv2.magnitude(sobel_x, sobel_y)
|
| 69 |
return Image.fromarray(np.uint8(sobel_combined))
|
| 70 |
|
| 71 |
+
def erosion(image, iterations=3, shape=(5, 5)):
|
| 72 |
+
iterations = int(iterations)
|
| 73 |
image = np.array(image.convert("L"))
|
| 74 |
+
kernel = np.ones(shape, np.uint8)
|
| 75 |
eroded_image = cv2.erode(image, kernel, iterations=iterations)
|
| 76 |
return Image.fromarray(eroded_image)
|
| 77 |
|
| 78 |
+
def dilatation(image, iterations=3, shape=(5, 5)):
|
| 79 |
+
iterations = int(iterations)
|
| 80 |
image = np.array(image.convert("L"))
|
| 81 |
+
kernel = np.ones(shape, np.uint8)
|
| 82 |
dilated_image = cv2.dilate(image, kernel, iterations=iterations)
|
| 83 |
return Image.fromarray(dilated_image)
|
| 84 |
|
| 85 |
|
|
|
|
|
|
|
| 86 |
# Interface Gradio
|
| 87 |
+
def image_processing(image, operation, modified_image, threshold=128, width=100, height=100, angle=30, k=5, iterations=3):
|
| 88 |
+
current_image = modified_image if modified_image is not None else image
|
| 89 |
if operation == "Négatif":
|
| 90 |
+
current_image = apply_negative(image)
|
| 91 |
elif operation == "Image en Gris":
|
| 92 |
+
current_image = grayscale(image)
|
| 93 |
elif operation == "Binarisation":
|
| 94 |
+
current_image = binarize_image(image, threshold)
|
| 95 |
elif operation == "Redimensionner":
|
| 96 |
+
current_image = resize_image(image, width, height)
|
| 97 |
elif operation == "Rotation":
|
| 98 |
+
current_image = rotate_image(image, angle)
|
|
|
|
|
|
|
| 99 |
elif operation == 'Filtre Gaussien':
|
| 100 |
+
current_image = gaussian_filter(image)
|
| 101 |
elif operation == 'Filtre Moyen':
|
| 102 |
+
current_image = mean_filter(image)
|
| 103 |
elif operation == 'Sobel Edges Extraction':
|
| 104 |
+
current_image = sobel_edges(image, k)
|
| 105 |
elif operation == 'Erosion':
|
| 106 |
+
current_image = erosion(image, iterations)
|
| 107 |
elif operation == 'Dilatation':
|
| 108 |
+
current_image = dilatation(image, iterations)
|
| 109 |
+
|
| 110 |
+
return current_image, show_histogram(current_image)
|
| 111 |
|
| 112 |
# Interface Gradio
|
| 113 |
with gr.Blocks() as demo:
|
| 114 |
+
gr.Markdown("## Traitement d'Images")
|
| 115 |
+
|
| 116 |
+
with gr.Row():
|
| 117 |
+
operation = gr.Radio(["Négatif", "Image en Gris", "Binarisation", "Redimensionner", "Rotation", 'Filtre Gaussien',
|
| 118 |
+
'Filtre Moyen', 'Sobel Edges Extraction', 'Erosion', 'Dilatation'], label="Opération", value="Négatif")
|
| 119 |
+
with gr.Row():
|
| 120 |
+
threshold = gr.Slider(0, 255, 128, label="Seuil de binarisation", visible=False)
|
| 121 |
+
width = gr.Number(value=100, label="Largeur", visible=False)
|
| 122 |
+
height = gr.Number(value=100, label="Hauteur", visible=False)
|
| 123 |
+
angle = gr.Slider(0, 360, 30, label="Angle de Rotation", visible=False)
|
| 124 |
+
k = gr.Number(value=5, label="k de Sobel", visible=False)
|
| 125 |
+
iterations = gr.Number(value=3, label="Nombre d'iteration pour les transformations morphologiques", visible=False)
|
| 126 |
+
|
| 127 |
+
def update_ui(operation):
|
| 128 |
+
# Mise à jour dynamique de la visibilité des champs
|
| 129 |
+
return {
|
| 130 |
+
threshold: gr.update(visible=operation == "Binarisation"),
|
| 131 |
+
width: gr.update(visible=operation == "Redimensionner"),
|
| 132 |
+
height: gr.update(visible=operation == "Redimensionner"),
|
| 133 |
+
angle: gr.update(visible=operation == "Rotation"),
|
| 134 |
+
k: gr.update(visible=operation == "Sobel Edges Extraction"),
|
| 135 |
+
iterations: gr.update(visible=operation in ["Erosion", "Dilatation"])
|
| 136 |
+
}
|
| 137 |
+
|
| 138 |
+
operation.change(update_ui, operation, [threshold, width, height, angle, k, iterations])
|
| 139 |
|
| 140 |
with gr.Row():
|
| 141 |
+
image_input = gr.Image(type="pil", label="Charger Image", scale=2)
|
| 142 |
+
original_hist = gr.Image(label="Histogramme de l'Image Originale", scale=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
with gr.Row():
|
| 144 |
+
image_output = gr.Image(type="pil", label="Image Modifiée", interactive=False)
|
| 145 |
+
modified_hist = gr.Image(label="Histogramme de l'Image Modifiée", scale=1)
|
| 146 |
+
|
| 147 |
+
# Afficher l'histogramme de l'image d'entrée
|
| 148 |
+
def s_hist(image):
|
| 149 |
+
return show_histogram(image)
|
| 150 |
+
image_input.change(s_hist, inputs=image_input, outputs=original_hist)
|
| 151 |
+
|
| 152 |
submit_button = gr.Button("Appliquer")
|
| 153 |
+
submit_button.click(image_processing, inputs=[image_input, operation, image_output, threshold, width, height, angle, k, iterations], outputs=[image_output, modified_hist])
|
| 154 |
|
| 155 |
# Lancer l'application Gradio
|
| 156 |
demo.launch()
|