Spaces:
Runtime error
Runtime error
| # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
| import argparse | |
| from datetime import datetime | |
| import logging | |
| import os | |
| import sys | |
| import warnings | |
| warnings.filterwarnings('ignore') | |
| import torch, random | |
| import torch.distributed as dist | |
| from PIL import Image | |
| import wan | |
| from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES | |
| from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander | |
| from wan.utils.utils import cache_video, cache_image, str2bool | |
| EXAMPLE_PROMPT = { | |
| "t2v-1.3B": { | |
| "prompt": "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.", | |
| }, | |
| "t2v-14B": { | |
| "prompt": "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.", | |
| }, | |
| "t2i-14B": { | |
| "prompt": "一个朴素端庄的美人", | |
| }, | |
| "i2v-14B": { | |
| "prompt": | |
| "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside.", | |
| "image": | |
| "examples/i2v_input.JPG", | |
| }, | |
| "flf2v-14B": { | |
| "prompt": | |
| "CG动画风格,一只蓝色的小鸟从地面起飞,煽动翅膀。小鸟羽毛细腻,胸前有独特的花纹,背景是蓝天白云,阳光明媚。镜跟随小鸟向上移动,展现出小鸟飞翔的姿态和天空的广阔。近景,仰视视角。", | |
| "first_frame": | |
| "examples/flf2v_input_first_frame.png", | |
| "last_frame": | |
| "examples/flf2v_input_last_frame.png", | |
| }, | |
| "vace-1.3B": { | |
| "src_ref_images": 'examples/girl.png,examples/snake.png', | |
| "prompt": "在一个欢乐而充满节日气氛的场景中,穿着鲜艳红色春服的小女孩正与她的可爱卡通蛇嬉戏。她的春服上绣着金色吉祥图案,散发着喜庆的气息,脸上洋溢着灿烂的笑容。蛇身呈现出亮眼的绿色,形状圆润,宽大的眼睛让它显得既友善又幽默。小女孩欢快地用手轻轻抚摸着蛇的头部,共同享受着这温馨的时刻。周围五彩斑斓的灯笼和彩带装饰着环境,阳光透过洒在她们身上,营造出一个充满友爱与幸福的新年氛围。" | |
| }, | |
| "vace-14B": { | |
| "src_ref_images": 'examples/girl.png,examples/snake.png', | |
| "prompt": "在一个欢乐而充满节日气氛的场景中,穿着鲜艳红色春服的小女孩正与她的可爱卡通蛇嬉戏。她的春服上绣着金色吉祥图案,散发着喜庆的气息,脸上洋溢着灿烂的笑容。蛇身呈现出亮眼的绿色,形状圆润,宽大的眼睛让它显得既友善又幽默。小女孩欢快地用手轻轻抚摸着蛇的头部,共同享受着这温馨的时刻。周围五彩斑斓的灯笼和彩带装饰着环境,阳光透过洒在她们身上,营造出一个充满友爱与幸福的新年氛围。" | |
| } | |
| } | |
| def _validate_args(args): | |
| # Basic check | |
| assert args.ckpt_dir is not None, "Please specify the checkpoint directory." | |
| assert args.task in WAN_CONFIGS, f"Unsupport task: {args.task}" | |
| assert args.task in EXAMPLE_PROMPT, f"Unsupport task: {args.task}" | |
| # The default sampling steps are 40 for image-to-video tasks and 50 for text-to-video tasks. | |
| if args.sample_steps is None: | |
| args.sample_steps = 50 | |
| if "i2v" in args.task: | |
| args.sample_steps = 40 | |
| if args.sample_shift is None: | |
| args.sample_shift = 5.0 | |
| if "i2v" in args.task and args.size in ["832*480", "480*832"]: | |
| args.sample_shift = 3.0 | |
| elif "flf2v" in args.task or "vace" in args.task: | |
| args.sample_shift = 16 | |
| # The default number of frames are 1 for text-to-image tasks and 81 for other tasks. | |
| if args.frame_num is None: | |
| args.frame_num = 1 if "t2i" in args.task else 81 | |
| # T2I frame_num check | |
| if "t2i" in args.task: | |
| assert args.frame_num == 1, f"Unsupport frame_num {args.frame_num} for task {args.task}" | |
| args.base_seed = args.base_seed if args.base_seed >= 0 else random.randint( | |
| 0, sys.maxsize) | |
| # Size check | |
| assert args.size in SUPPORTED_SIZES[ | |
| args. | |
| task], f"Unsupport size {args.size} for task {args.task}, supported sizes are: {', '.join(SUPPORTED_SIZES[args.task])}" | |
| def _parse_args(): | |
| parser = argparse.ArgumentParser( | |
| description="Generate a image or video from a text prompt or image using Wan" | |
| ) | |
| parser.add_argument( | |
| "--task", | |
| type=str, | |
| default="t2v-14B", | |
| choices=list(WAN_CONFIGS.keys()), | |
| help="The task to run.") | |
| parser.add_argument( | |
| "--size", | |
| type=str, | |
| default="1280*720", | |
| choices=list(SIZE_CONFIGS.keys()), | |
| help="The area (width*height) of the generated video. For the I2V task, the aspect ratio of the output video will follow that of the input image." | |
| ) | |
| parser.add_argument( | |
| "--frame_num", | |
| type=int, | |
| default=None, | |
| help="How many frames to sample from a image or video. The number should be 4n+1" | |
| ) | |
| parser.add_argument( | |
| "--ckpt_dir", | |
| type=str, | |
| default=None, | |
| help="The path to the checkpoint directory.") | |
| parser.add_argument( | |
| "--offload_model", | |
| type=str2bool, | |
| default=None, | |
| help="Whether to offload the model to CPU after each model forward, reducing GPU memory usage." | |
| ) | |
| parser.add_argument( | |
| "--ulysses_size", | |
| type=int, | |
| default=1, | |
| help="The size of the ulysses parallelism in DiT.") | |
| parser.add_argument( | |
| "--ring_size", | |
| type=int, | |
| default=1, | |
| help="The size of the ring attention parallelism in DiT.") | |
| parser.add_argument( | |
| "--t5_fsdp", | |
| action="store_true", | |
| default=False, | |
| help="Whether to use FSDP for T5.") | |
| parser.add_argument( | |
| "--t5_cpu", | |
| action="store_true", | |
| default=False, | |
| help="Whether to place T5 model on CPU.") | |
| parser.add_argument( | |
| "--dit_fsdp", | |
| action="store_true", | |
| default=False, | |
| help="Whether to use FSDP for DiT.") | |
| parser.add_argument( | |
| "--save_file", | |
| type=str, | |
| default=None, | |
| help="The file to save the generated image or video to.") | |
| parser.add_argument( | |
| "--src_video", | |
| type=str, | |
| default=None, | |
| help="The file of the source video. Default None.") | |
| parser.add_argument( | |
| "--src_mask", | |
| type=str, | |
| default=None, | |
| help="The file of the source mask. Default None.") | |
| parser.add_argument( | |
| "--src_ref_images", | |
| type=str, | |
| default=None, | |
| help="The file list of the source reference images. Separated by ','. Default None.") | |
| parser.add_argument( | |
| "--prompt", | |
| type=str, | |
| default=None, | |
| help="The prompt to generate the image or video from.") | |
| parser.add_argument( | |
| "--use_prompt_extend", | |
| action="store_true", | |
| default=False, | |
| help="Whether to use prompt extend.") | |
| parser.add_argument( | |
| "--prompt_extend_method", | |
| type=str, | |
| default="local_qwen", | |
| choices=["dashscope", "local_qwen"], | |
| help="The prompt extend method to use.") | |
| parser.add_argument( | |
| "--prompt_extend_model", | |
| type=str, | |
| default=None, | |
| help="The prompt extend model to use.") | |
| parser.add_argument( | |
| "--prompt_extend_target_lang", | |
| type=str, | |
| default="zh", | |
| choices=["zh", "en"], | |
| help="The target language of prompt extend.") | |
| parser.add_argument( | |
| "--base_seed", | |
| type=int, | |
| default=-1, | |
| help="The seed to use for generating the image or video.") | |
| parser.add_argument( | |
| "--image", | |
| type=str, | |
| default=None, | |
| help="[image to video] The image to generate the video from.") | |
| parser.add_argument( | |
| "--first_frame", | |
| type=str, | |
| default=None, | |
| help="[first-last frame to video] The image (first frame) to generate the video from.") | |
| parser.add_argument( | |
| "--last_frame", | |
| type=str, | |
| default=None, | |
| help="[first-last frame to video] The image (last frame) to generate the video from.") | |
| parser.add_argument( | |
| "--sample_solver", | |
| type=str, | |
| default='unipc', | |
| choices=['unipc', 'dpm++'], | |
| help="The solver used to sample.") | |
| parser.add_argument( | |
| "--sample_steps", type=int, default=None, help="The sampling steps.") | |
| parser.add_argument( | |
| "--sample_shift", | |
| type=float, | |
| default=None, | |
| help="Sampling shift factor for flow matching schedulers.") | |
| parser.add_argument( | |
| "--sample_guide_scale", | |
| type=float, | |
| default=5.0, | |
| help="Classifier free guidance scale.") | |
| args = parser.parse_args() | |
| _validate_args(args) | |
| return args | |
| def _init_logging(rank): | |
| # logging | |
| if rank == 0: | |
| # set format | |
| logging.basicConfig( | |
| level=logging.INFO, | |
| format="[%(asctime)s] %(levelname)s: %(message)s", | |
| handlers=[logging.StreamHandler(stream=sys.stdout)]) | |
| else: | |
| logging.basicConfig(level=logging.ERROR) | |
| def generate(args): | |
| rank = int(os.getenv("RANK", 0)) | |
| world_size = int(os.getenv("WORLD_SIZE", 1)) | |
| local_rank = int(os.getenv("LOCAL_RANK", 0)) | |
| device = local_rank | |
| _init_logging(rank) | |
| if args.offload_model is None: | |
| args.offload_model = False if world_size > 1 else True | |
| logging.info( | |
| f"offload_model is not specified, set to {args.offload_model}.") | |
| if world_size > 1: | |
| torch.cuda.set_device(local_rank) | |
| dist.init_process_group( | |
| backend="nccl", | |
| init_method="env://", | |
| rank=rank, | |
| world_size=world_size) | |
| else: | |
| assert not ( | |
| args.t5_fsdp or args.dit_fsdp | |
| ), f"t5_fsdp and dit_fsdp are not supported in non-distributed environments." | |
| assert not ( | |
| args.ulysses_size > 1 or args.ring_size > 1 | |
| ), f"context parallel are not supported in non-distributed environments." | |
| if args.ulysses_size > 1 or args.ring_size > 1: | |
| assert args.ulysses_size * args.ring_size == world_size, f"The number of ulysses_size and ring_size should be equal to the world size." | |
| from xfuser.core.distributed import (initialize_model_parallel, | |
| init_distributed_environment) | |
| init_distributed_environment( | |
| rank=dist.get_rank(), world_size=dist.get_world_size()) | |
| initialize_model_parallel( | |
| sequence_parallel_degree=dist.get_world_size(), | |
| ring_degree=args.ring_size, | |
| ulysses_degree=args.ulysses_size, | |
| ) | |
| if args.use_prompt_extend: | |
| if args.prompt_extend_method == "dashscope": | |
| prompt_expander = DashScopePromptExpander( | |
| model_name=args.prompt_extend_model, is_vl="i2v" in args.task or "flf2v" in args.task) | |
| elif args.prompt_extend_method == "local_qwen": | |
| prompt_expander = QwenPromptExpander( | |
| model_name=args.prompt_extend_model, | |
| is_vl="i2v" in args.task, | |
| device=rank) | |
| else: | |
| raise NotImplementedError( | |
| f"Unsupport prompt_extend_method: {args.prompt_extend_method}") | |
| cfg = WAN_CONFIGS[args.task] | |
| if args.ulysses_size > 1: | |
| assert cfg.num_heads % args.ulysses_size == 0, f"`{cfg.num_heads=}` cannot be divided evenly by `{args.ulysses_size=}`." | |
| logging.info(f"Generation job args: {args}") | |
| logging.info(f"Generation model config: {cfg}") | |
| if dist.is_initialized(): | |
| base_seed = [args.base_seed] if rank == 0 else [None] | |
| dist.broadcast_object_list(base_seed, src=0) | |
| args.base_seed = base_seed[0] | |
| if "t2v" in args.task or "t2i" in args.task: | |
| if args.prompt is None: | |
| args.prompt = EXAMPLE_PROMPT[args.task]["prompt"] | |
| logging.info(f"Input prompt: {args.prompt}") | |
| if args.use_prompt_extend: | |
| logging.info("Extending prompt ...") | |
| if rank == 0: | |
| prompt_output = prompt_expander( | |
| args.prompt, | |
| tar_lang=args.prompt_extend_target_lang, | |
| seed=args.base_seed) | |
| if prompt_output.status == False: | |
| logging.info( | |
| f"Extending prompt failed: {prompt_output.message}") | |
| logging.info("Falling back to original prompt.") | |
| input_prompt = args.prompt | |
| else: | |
| input_prompt = prompt_output.prompt | |
| input_prompt = [input_prompt] | |
| else: | |
| input_prompt = [None] | |
| if dist.is_initialized(): | |
| dist.broadcast_object_list(input_prompt, src=0) | |
| args.prompt = input_prompt[0] | |
| logging.info(f"Extended prompt: {args.prompt}") | |
| logging.info("Creating WanT2V pipeline.") | |
| wan_t2v = wan.WanT2V( | |
| config=cfg, | |
| checkpoint_dir=args.ckpt_dir, | |
| device_id=device, | |
| rank=rank, | |
| t5_fsdp=args.t5_fsdp, | |
| dit_fsdp=args.dit_fsdp, | |
| use_usp=(args.ulysses_size > 1 or args.ring_size > 1), | |
| t5_cpu=args.t5_cpu, | |
| ) | |
| logging.info( | |
| f"Generating {'image' if 't2i' in args.task else 'video'} ...") | |
| video = wan_t2v.generate( | |
| args.prompt, | |
| size=SIZE_CONFIGS[args.size], | |
| frame_num=args.frame_num, | |
| shift=args.sample_shift, | |
| sample_solver=args.sample_solver, | |
| sampling_steps=args.sample_steps, | |
| guide_scale=args.sample_guide_scale, | |
| seed=args.base_seed, | |
| offload_model=args.offload_model) | |
| elif "i2v" in args.task: | |
| if args.prompt is None: | |
| args.prompt = EXAMPLE_PROMPT[args.task]["prompt"] | |
| if args.image is None: | |
| args.image = EXAMPLE_PROMPT[args.task]["image"] | |
| logging.info(f"Input prompt: {args.prompt}") | |
| logging.info(f"Input image: {args.image}") | |
| img = Image.open(args.image).convert("RGB") | |
| if args.use_prompt_extend: | |
| logging.info("Extending prompt ...") | |
| if rank == 0: | |
| prompt_output = prompt_expander( | |
| args.prompt, | |
| tar_lang=args.prompt_extend_target_lang, | |
| image=img, | |
| seed=args.base_seed) | |
| if prompt_output.status == False: | |
| logging.info( | |
| f"Extending prompt failed: {prompt_output.message}") | |
| logging.info("Falling back to original prompt.") | |
| input_prompt = args.prompt | |
| else: | |
| input_prompt = prompt_output.prompt | |
| input_prompt = [input_prompt] | |
| else: | |
| input_prompt = [None] | |
| if dist.is_initialized(): | |
| dist.broadcast_object_list(input_prompt, src=0) | |
| args.prompt = input_prompt[0] | |
| logging.info(f"Extended prompt: {args.prompt}") | |
| logging.info("Creating WanI2V pipeline.") | |
| wan_i2v = wan.WanI2V( | |
| config=cfg, | |
| checkpoint_dir=args.ckpt_dir, | |
| device_id=device, | |
| rank=rank, | |
| t5_fsdp=args.t5_fsdp, | |
| dit_fsdp=args.dit_fsdp, | |
| use_usp=(args.ulysses_size > 1 or args.ring_size > 1), | |
| t5_cpu=args.t5_cpu, | |
| ) | |
| logging.info("Generating video ...") | |
| video = wan_i2v.generate( | |
| args.prompt, | |
| img, | |
| max_area=MAX_AREA_CONFIGS[args.size], | |
| frame_num=args.frame_num, | |
| shift=args.sample_shift, | |
| sample_solver=args.sample_solver, | |
| sampling_steps=args.sample_steps, | |
| guide_scale=args.sample_guide_scale, | |
| seed=args.base_seed, | |
| offload_model=args.offload_model) | |
| elif "flf2v" in args.task: | |
| if args.prompt is None: | |
| args.prompt = EXAMPLE_PROMPT[args.task]["prompt"] | |
| if args.first_frame is None or args.last_frame is None: | |
| args.first_frame = EXAMPLE_PROMPT[args.task]["first_frame"] | |
| args.last_frame = EXAMPLE_PROMPT[args.task]["last_frame"] | |
| logging.info(f"Input prompt: {args.prompt}") | |
| logging.info(f"Input first frame: {args.first_frame}") | |
| logging.info(f"Input last frame: {args.last_frame}") | |
| first_frame = Image.open(args.first_frame).convert("RGB") | |
| last_frame = Image.open(args.last_frame).convert("RGB") | |
| if args.use_prompt_extend: | |
| logging.info("Extending prompt ...") | |
| if rank == 0: | |
| prompt_output = prompt_expander( | |
| args.prompt, | |
| tar_lang=args.prompt_extend_target_lang, | |
| image=[first_frame, last_frame], | |
| seed=args.base_seed) | |
| if prompt_output.status == False: | |
| logging.info( | |
| f"Extending prompt failed: {prompt_output.message}") | |
| logging.info("Falling back to original prompt.") | |
| input_prompt = args.prompt | |
| else: | |
| input_prompt = prompt_output.prompt | |
| input_prompt = [input_prompt] | |
| else: | |
| input_prompt = [None] | |
| if dist.is_initialized(): | |
| dist.broadcast_object_list(input_prompt, src=0) | |
| args.prompt = input_prompt[0] | |
| logging.info(f"Extended prompt: {args.prompt}") | |
| logging.info("Creating WanFLF2V pipeline.") | |
| wan_flf2v = wan.WanFLF2V( | |
| config=cfg, | |
| checkpoint_dir=args.ckpt_dir, | |
| device_id=device, | |
| rank=rank, | |
| t5_fsdp=args.t5_fsdp, | |
| dit_fsdp=args.dit_fsdp, | |
| use_usp=(args.ulysses_size > 1 or args.ring_size > 1), | |
| t5_cpu=args.t5_cpu, | |
| ) | |
| logging.info("Generating video ...") | |
| video = wan_flf2v.generate( | |
| args.prompt, | |
| first_frame, | |
| last_frame, | |
| max_area=MAX_AREA_CONFIGS[args.size], | |
| frame_num=args.frame_num, | |
| shift=args.sample_shift, | |
| sample_solver=args.sample_solver, | |
| sampling_steps=args.sample_steps, | |
| guide_scale=args.sample_guide_scale, | |
| seed=args.base_seed, | |
| offload_model=args.offload_model | |
| ) | |
| elif "vace" in args.task: | |
| if args.prompt is None: | |
| args.prompt = EXAMPLE_PROMPT[args.task]["prompt"] | |
| args.src_video = EXAMPLE_PROMPT[args.task].get("src_video", None) | |
| args.src_mask = EXAMPLE_PROMPT[args.task].get("src_mask", None) | |
| args.src_ref_images = EXAMPLE_PROMPT[args.task].get("src_ref_images", None) | |
| logging.info(f"Input prompt: {args.prompt}") | |
| if args.use_prompt_extend and args.use_prompt_extend != 'plain': | |
| logging.info("Extending prompt ...") | |
| if rank == 0: | |
| prompt = prompt_expander.forward(args.prompt) | |
| logging.info(f"Prompt extended from '{args.prompt}' to '{prompt}'") | |
| input_prompt = [prompt] | |
| else: | |
| input_prompt = [None] | |
| if dist.is_initialized(): | |
| dist.broadcast_object_list(input_prompt, src=0) | |
| args.prompt = input_prompt[0] | |
| logging.info(f"Extended prompt: {args.prompt}") | |
| logging.info("Creating VACE pipeline.") | |
| wan_vace = wan.WanVace( | |
| config=cfg, | |
| checkpoint_dir=args.ckpt_dir, | |
| device_id=device, | |
| rank=rank, | |
| t5_fsdp=args.t5_fsdp, | |
| dit_fsdp=args.dit_fsdp, | |
| use_usp=(args.ulysses_size > 1 or args.ring_size > 1), | |
| t5_cpu=args.t5_cpu, | |
| ) | |
| src_video, src_mask, src_ref_images = wan_vace.prepare_source([args.src_video], | |
| [args.src_mask], | |
| [None if args.src_ref_images is None else args.src_ref_images.split(',')], | |
| args.frame_num, SIZE_CONFIGS[args.size], device) | |
| logging.info(f"Generating video...") | |
| video = wan_vace.generate( | |
| args.prompt, | |
| src_video, | |
| src_mask, | |
| src_ref_images, | |
| size=SIZE_CONFIGS[args.size], | |
| frame_num=args.frame_num, | |
| shift=args.sample_shift, | |
| sample_solver=args.sample_solver, | |
| sampling_steps=args.sample_steps, | |
| guide_scale=args.sample_guide_scale, | |
| seed=args.base_seed, | |
| offload_model=args.offload_model) | |
| else: | |
| raise ValueError(f"Unkown task type: {args.task}") | |
| if rank == 0: | |
| if args.save_file is None: | |
| formatted_time = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| formatted_prompt = args.prompt.replace(" ", "_").replace("/", | |
| "_")[:50] | |
| suffix = '.png' if "t2i" in args.task else '.mp4' | |
| args.save_file = f"{args.task}_{args.size.replace('*','x') if sys.platform=='win32' else args.size}_{args.ulysses_size}_{args.ring_size}_{formatted_prompt}_{formatted_time}" + suffix | |
| if "t2i" in args.task: | |
| logging.info(f"Saving generated image to {args.save_file}") | |
| cache_image( | |
| tensor=video.squeeze(1)[None], | |
| save_file=args.save_file, | |
| nrow=1, | |
| normalize=True, | |
| value_range=(-1, 1)) | |
| else: | |
| logging.info(f"Saving generated video to {args.save_file}") | |
| cache_video( | |
| tensor=video[None], | |
| save_file=args.save_file, | |
| fps=cfg.sample_fps, | |
| nrow=1, | |
| normalize=True, | |
| value_range=(-1, 1)) | |
| logging.info("Finished.") | |
| if __name__ == "__main__": | |
| args = _parse_args() | |
| generate(args) | |