Spaces:
Sleeping
Sleeping
# Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# Implementation of MASt3R training losses | |
# -------------------------------------------------------- | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
from sklearn.metrics import average_precision_score | |
import mast3r.utils.path_to_dust3r # noqa | |
from dust3r.losses import BaseCriterion, Criterion, MultiLoss, Sum, ConfLoss | |
from dust3r.losses import Regr3D as Regr3D_dust3r | |
from dust3r.utils.geometry import (geotrf, inv, normalize_pointcloud) | |
from dust3r.inference import get_pred_pts3d | |
from dust3r.utils.geometry import get_joint_pointcloud_depth, get_joint_pointcloud_center_scale | |
def apply_log_to_norm(xyz): | |
d = xyz.norm(dim=-1, keepdim=True) | |
xyz = xyz / d.clip(min=1e-8) | |
xyz = xyz * torch.log1p(d) | |
return xyz | |
class Regr3D (Regr3D_dust3r): | |
def __init__(self, criterion, norm_mode='avg_dis', gt_scale=False, opt_fit_gt=False, | |
sky_loss_value=2, max_metric_scale=False, loss_in_log=False): | |
self.loss_in_log = loss_in_log | |
if norm_mode.startswith('?'): | |
# do no norm pts from metric scale datasets | |
self.norm_all = False | |
self.norm_mode = norm_mode[1:] | |
else: | |
self.norm_all = True | |
self.norm_mode = norm_mode | |
super().__init__(criterion, self.norm_mode, gt_scale) | |
self.sky_loss_value = sky_loss_value | |
self.max_metric_scale = max_metric_scale | |
def get_all_pts3d(self, gt1, gt2, pred1, pred2, dist_clip=None): | |
# everything is normalized w.r.t. camera of view1 | |
in_camera1 = inv(gt1['camera_pose']) | |
gt_pts1 = geotrf(in_camera1, gt1['pts3d']) # B,H,W,3 | |
gt_pts2 = geotrf(in_camera1, gt2['pts3d']) # B,H,W,3 | |
valid1 = gt1['valid_mask'].clone() | |
valid2 = gt2['valid_mask'].clone() | |
if dist_clip is not None: | |
# points that are too far-away == invalid | |
dis1 = gt_pts1.norm(dim=-1) # (B, H, W) | |
dis2 = gt_pts2.norm(dim=-1) # (B, H, W) | |
valid1 = valid1 & (dis1 <= dist_clip) | |
valid2 = valid2 & (dis2 <= dist_clip) | |
if self.loss_in_log == 'before': | |
# this only make sense when depth_mode == 'linear' | |
gt_pts1 = apply_log_to_norm(gt_pts1) | |
gt_pts2 = apply_log_to_norm(gt_pts2) | |
pr_pts1 = get_pred_pts3d(gt1, pred1, use_pose=False).clone() | |
pr_pts2 = get_pred_pts3d(gt2, pred2, use_pose=True).clone() | |
if not self.norm_all: | |
if self.max_metric_scale: | |
B = valid1.shape[0] | |
# valid1: B, H, W | |
# torch.linalg.norm(gt_pts1, dim=-1) -> B, H, W | |
# dist1_to_cam1 -> reshape to B, H*W | |
dist1_to_cam1 = torch.where(valid1, torch.linalg.norm(gt_pts1, dim=-1), 0).view(B, -1) | |
dist2_to_cam1 = torch.where(valid2, torch.linalg.norm(gt_pts2, dim=-1), 0).view(B, -1) | |
# is_metric_scale: B | |
# dist1_to_cam1.max(dim=-1).values -> B | |
gt1['is_metric_scale'] = gt1['is_metric_scale'] \ | |
& (dist1_to_cam1.max(dim=-1).values < self.max_metric_scale) \ | |
& (dist2_to_cam1.max(dim=-1).values < self.max_metric_scale) | |
gt2['is_metric_scale'] = gt1['is_metric_scale'] | |
mask = ~gt1['is_metric_scale'] | |
else: | |
mask = torch.ones_like(gt1['is_metric_scale']) | |
# normalize 3d points | |
if self.norm_mode and mask.any(): | |
pr_pts1[mask], pr_pts2[mask] = normalize_pointcloud(pr_pts1[mask], pr_pts2[mask], self.norm_mode, | |
valid1[mask], valid2[mask]) | |
if self.norm_mode and not self.gt_scale: | |
gt_pts1, gt_pts2, norm_factor = normalize_pointcloud(gt_pts1, gt_pts2, self.norm_mode, | |
valid1, valid2, ret_factor=True) | |
# apply the same normalization to prediction | |
pr_pts1[~mask] = pr_pts1[~mask] / norm_factor[~mask] | |
pr_pts2[~mask] = pr_pts2[~mask] / norm_factor[~mask] | |
# return sky segmentation, making sure they don't include any labelled 3d points | |
sky1 = gt1['sky_mask'] & (~valid1) | |
sky2 = gt2['sky_mask'] & (~valid2) | |
return gt_pts1, gt_pts2, pr_pts1, pr_pts2, valid1, valid2, sky1, sky2, {} | |
def compute_loss(self, gt1, gt2, pred1, pred2, **kw): | |
gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, sky1, sky2, monitoring = \ | |
self.get_all_pts3d(gt1, gt2, pred1, pred2, **kw) | |
if self.sky_loss_value > 0: | |
assert self.criterion.reduction == 'none', 'sky_loss_value should be 0 if no conf loss' | |
# add the sky pixel as "valid" pixels... | |
mask1 = mask1 | sky1 | |
mask2 = mask2 | sky2 | |
# loss on img1 side | |
pred_pts1 = pred_pts1[mask1] | |
gt_pts1 = gt_pts1[mask1] | |
if self.loss_in_log and self.loss_in_log != 'before': | |
# this only make sense when depth_mode == 'exp' | |
pred_pts1 = apply_log_to_norm(pred_pts1) | |
gt_pts1 = apply_log_to_norm(gt_pts1) | |
l1 = self.criterion(pred_pts1, gt_pts1) | |
# loss on gt2 side | |
pred_pts2 = pred_pts2[mask2] | |
gt_pts2 = gt_pts2[mask2] | |
if self.loss_in_log and self.loss_in_log != 'before': | |
pred_pts2 = apply_log_to_norm(pred_pts2) | |
gt_pts2 = apply_log_to_norm(gt_pts2) | |
l2 = self.criterion(pred_pts2, gt_pts2) | |
if self.sky_loss_value > 0: | |
assert self.criterion.reduction == 'none', 'sky_loss_value should be 0 if no conf loss' | |
# ... but force the loss to be high there | |
l1 = torch.where(sky1[mask1], self.sky_loss_value, l1) | |
l2 = torch.where(sky2[mask2], self.sky_loss_value, l2) | |
self_name = type(self).__name__ | |
details = {self_name + '_pts3d_1': float(l1.mean()), self_name + '_pts3d_2': float(l2.mean())} | |
return Sum((l1, mask1), (l2, mask2)), (details | monitoring) | |
class Regr3D_ShiftInv (Regr3D): | |
""" Same than Regr3D but invariant to depth shift. | |
""" | |
def get_all_pts3d(self, gt1, gt2, pred1, pred2): | |
# compute unnormalized points | |
gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, sky1, sky2, monitoring = \ | |
super().get_all_pts3d(gt1, gt2, pred1, pred2) | |
# compute median depth | |
gt_z1, gt_z2 = gt_pts1[..., 2], gt_pts2[..., 2] | |
pred_z1, pred_z2 = pred_pts1[..., 2], pred_pts2[..., 2] | |
gt_shift_z = get_joint_pointcloud_depth(gt_z1, gt_z2, mask1, mask2)[:, None, None] | |
pred_shift_z = get_joint_pointcloud_depth(pred_z1, pred_z2, mask1, mask2)[:, None, None] | |
# subtract the median depth | |
gt_z1 -= gt_shift_z | |
gt_z2 -= gt_shift_z | |
pred_z1 -= pred_shift_z | |
pred_z2 -= pred_shift_z | |
# monitoring = dict(monitoring, gt_shift_z=gt_shift_z.mean().detach(), pred_shift_z=pred_shift_z.mean().detach()) | |
return gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, sky1, sky2, monitoring | |
class Regr3D_ScaleInv (Regr3D): | |
""" Same than Regr3D but invariant to depth scale. | |
if gt_scale == True: enforce the prediction to take the same scale than GT | |
""" | |
def get_all_pts3d(self, gt1, gt2, pred1, pred2): | |
# compute depth-normalized points | |
gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, sky1, sky2, monitoring = \ | |
super().get_all_pts3d(gt1, gt2, pred1, pred2) | |
# measure scene scale | |
_, gt_scale = get_joint_pointcloud_center_scale(gt_pts1, gt_pts2, mask1, mask2) | |
_, pred_scale = get_joint_pointcloud_center_scale(pred_pts1, pred_pts2, mask1, mask2) | |
# prevent predictions to be in a ridiculous range | |
pred_scale = pred_scale.clip(min=1e-3, max=1e3) | |
# subtract the median depth | |
if self.gt_scale: | |
pred_pts1 *= gt_scale / pred_scale | |
pred_pts2 *= gt_scale / pred_scale | |
# monitoring = dict(monitoring, pred_scale=(pred_scale/gt_scale).mean()) | |
else: | |
gt_pts1 /= gt_scale | |
gt_pts2 /= gt_scale | |
pred_pts1 /= pred_scale | |
pred_pts2 /= pred_scale | |
# monitoring = dict(monitoring, gt_scale=gt_scale.mean(), pred_scale=pred_scale.mean().detach()) | |
return gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, sky1, sky2, monitoring | |
class Regr3D_ScaleShiftInv (Regr3D_ScaleInv, Regr3D_ShiftInv): | |
# calls Regr3D_ShiftInv first, then Regr3D_ScaleInv | |
pass | |
def get_similarities(desc1, desc2, euc=False): | |
if euc: # euclidean distance in same range than similarities | |
dists = (desc1[:, :, None] - desc2[:, None]).norm(dim=-1) | |
sim = 1 / (1 + dists) | |
else: | |
# Compute similarities | |
sim = desc1 @ desc2.transpose(-2, -1) | |
return sim | |
class MatchingCriterion(BaseCriterion): | |
def __init__(self, reduction='mean', fp=torch.float32): | |
super().__init__(reduction) | |
self.fp = fp | |
def forward(self, a, b, valid_matches=None, euc=False): | |
assert a.ndim >= 2 and 1 <= a.shape[-1], f'Bad shape = {a.shape}' | |
dist = self.loss(a.to(self.fp), b.to(self.fp), valid_matches, euc=euc) | |
# one dimension less or reduction to single value | |
assert (valid_matches is None and dist.ndim == a.ndim - | |
1) or self.reduction in ['mean', 'sum', '1-mean', 'none'] | |
if self.reduction == 'none': | |
return dist | |
if self.reduction == 'sum': | |
return dist.sum() | |
if self.reduction == 'mean': | |
return dist.mean() if dist.numel() > 0 else dist.new_zeros(()) | |
if self.reduction == '1-mean': | |
return 1. - dist.mean() if dist.numel() > 0 else dist.new_ones(()) | |
raise ValueError(f'bad {self.reduction=} mode') | |
def loss(self, a, b, valid_matches=None): | |
raise NotImplementedError | |
class InfoNCE(MatchingCriterion): | |
def __init__(self, temperature=0.07, eps=1e-8, mode='all', **kwargs): | |
super().__init__(**kwargs) | |
self.temperature = temperature | |
self.eps = eps | |
assert mode in ['all', 'proper', 'dual'] | |
self.mode = mode | |
def loss(self, desc1, desc2, valid_matches=None, euc=False): | |
# valid positives are along diagonals | |
B, N, D = desc1.shape | |
B2, N2, D2 = desc2.shape | |
assert B == B2 and D == D2 | |
if valid_matches is None: | |
valid_matches = torch.ones([B, N], dtype=bool) | |
# torch.all(valid_matches.sum(dim=-1) > 0) some pairs have no matches???? | |
assert valid_matches.shape == torch.Size([B, N]) and valid_matches.sum() > 0 | |
# Tempered similarities | |
sim = get_similarities(desc1, desc2, euc) / self.temperature | |
sim[sim.isnan()] = -torch.inf # ignore nans | |
# Softmax of positives with temperature | |
sim = sim.exp_() # save peak memory | |
positives = sim.diagonal(dim1=-2, dim2=-1) | |
# Loss | |
if self.mode == 'all': # Previous InfoNCE | |
loss = -torch.log((positives / sim.sum(dim=-1).sum(dim=-1, keepdim=True)).clip(self.eps)) | |
elif self.mode == 'proper': # Proper InfoNCE | |
loss = -(torch.log((positives / sim.sum(dim=-2)).clip(self.eps)) + | |
torch.log((positives / sim.sum(dim=-1)).clip(self.eps))) | |
elif self.mode == 'dual': # Dual Softmax | |
loss = -(torch.log((positives**2 / sim.sum(dim=-1) / sim.sum(dim=-2)).clip(self.eps))) | |
else: | |
raise ValueError("This should not happen...") | |
return loss[valid_matches] | |
class APLoss (MatchingCriterion): | |
""" AP loss. | |
""" | |
def __init__(self, nq='torch', min=0, max=1, euc=False, **kw): | |
super().__init__(**kw) | |
# Exact/True AP loss (not differentiable) | |
if nq == 0: | |
nq = 'sklearn' # special case | |
try: | |
self.compute_AP = eval('self.compute_true_AP_' + nq) | |
except: | |
raise ValueError("Unknown mode %s for AP loss" % nq) | |
def compute_true_AP_sklearn(scores, labels): | |
def compute_AP(label, score): | |
return average_precision_score(label, score) | |
aps = scores.new_zeros((scores.shape[0], scores.shape[1])) | |
label_np = labels.cpu().numpy().astype(bool) | |
scores_np = scores.cpu().numpy() | |
for bi in range(scores_np.shape[0]): | |
for i in range(scores_np.shape[1]): | |
labels = label_np[bi, i, :] | |
if labels.sum() < 1: | |
continue | |
aps[bi, i] = compute_AP(labels, scores_np[bi, i, :]) | |
return aps | |
def compute_true_AP_torch(scores, labels): | |
assert scores.shape == labels.shape | |
B, N, M = labels.shape | |
dev = labels.device | |
with torch.no_grad(): | |
# sort scores | |
_, order = scores.sort(dim=-1, descending=True) | |
# sort labels accordingly | |
labels = labels[torch.arange(B, device=dev)[:, None, None].expand(order.shape), | |
torch.arange(N, device=dev)[None, :, None].expand(order.shape), | |
order] | |
# compute number of positives per query | |
npos = labels.sum(dim=-1) | |
assert torch.all(torch.isclose(npos, npos[0, 0]) | |
), "only implemented for constant number of positives per query" | |
npos = int(npos[0, 0]) | |
# compute precision at each recall point | |
posrank = labels.nonzero()[:, -1].view(B, N, npos) | |
recall = torch.arange(1, 1 + npos, dtype=torch.float32, device=dev)[None, None, :].expand(B, N, npos) | |
precision = recall / (1 + posrank).float() | |
# average precision values at all recall points | |
aps = precision.mean(dim=-1) | |
return aps | |
def loss(self, desc1, desc2, valid_matches=None, euc=False): # if matches is None, positives are the diagonal | |
B, N1, D = desc1.shape | |
B2, N2, D2 = desc2.shape | |
assert B == B2 and D == D2 | |
scores = get_similarities(desc1, desc2, euc) | |
labels = torch.zeros([B, N1, N2], dtype=scores.dtype, device=scores.device) | |
# allow all diagonal positives and only mask afterwards | |
labels.diagonal(dim1=-2, dim2=-1)[...] = 1. | |
apscore = self.compute_AP(scores, labels) | |
if valid_matches is not None: | |
apscore = apscore[valid_matches] | |
return apscore | |
class MatchingLoss (Criterion, MultiLoss): | |
""" | |
Matching loss per image | |
only compare pixels inside an image but not in the whole batch as what would be done usually | |
""" | |
def __init__(self, criterion, withconf=False, use_pts3d=False, negatives_padding=0, blocksize=4096): | |
super().__init__(criterion) | |
self.negatives_padding = negatives_padding | |
self.use_pts3d = use_pts3d | |
self.blocksize = blocksize | |
self.withconf = withconf | |
def add_negatives(self, outdesc2, desc2, batchid, x2, y2): | |
if self.negatives_padding: | |
B, H, W, D = desc2.shape | |
negatives = torch.ones([B, H, W], device=desc2.device, dtype=bool) | |
negatives[batchid, y2, x2] = False | |
sel = negatives & (negatives.view([B, -1]).cumsum(dim=-1).view(B, H, W) | |
<= self.negatives_padding) # take the N-first negatives | |
outdesc2 = torch.cat([outdesc2, desc2[sel].view([B, -1, D])], dim=1) | |
return outdesc2 | |
def get_confs(self, pred1, pred2, sel1, sel2): | |
if self.withconf: | |
if self.use_pts3d: | |
outconfs1 = pred1['conf'][sel1] | |
outconfs2 = pred2['conf'][sel2] | |
else: | |
outconfs1 = pred1['desc_conf'][sel1] | |
outconfs2 = pred2['desc_conf'][sel2] | |
else: | |
outconfs1 = outconfs2 = None | |
return outconfs1, outconfs2 | |
def get_descs(self, pred1, pred2): | |
if self.use_pts3d: | |
desc1, desc2 = pred1['pts3d'], pred2['pts3d_in_other_view'] | |
else: | |
desc1, desc2 = pred1['desc'], pred2['desc'] | |
return desc1, desc2 | |
def get_matching_descs(self, gt1, gt2, pred1, pred2, **kw): | |
outdesc1 = outdesc2 = outconfs1 = outconfs2 = None | |
# Recover descs, GT corres and valid mask | |
desc1, desc2 = self.get_descs(pred1, pred2) | |
(x1, y1), (x2, y2) = gt1['corres'].unbind(-1), gt2['corres'].unbind(-1) | |
valid_matches = gt1['valid_corres'] | |
# Select descs that have GT matches | |
B, N = x1.shape | |
batchid = torch.arange(B)[:, None].repeat(1, N) # B, N | |
outdesc1, outdesc2 = desc1[batchid, y1, x1], desc2[batchid, y2, x2] # B, N, D | |
# Padd with unused negatives | |
outdesc2 = self.add_negatives(outdesc2, desc2, batchid, x2, y2) | |
# Gather confs if needed | |
sel1 = batchid, y1, x1 | |
sel2 = batchid, y2, x2 | |
outconfs1, outconfs2 = self.get_confs(pred1, pred2, sel1, sel2) | |
return outdesc1, outdesc2, outconfs1, outconfs2, valid_matches, {'use_euclidean_dist': self.use_pts3d} | |
def blockwise_criterion(self, descs1, descs2, confs1, confs2, valid_matches, euc, rng=np.random, shuffle=True): | |
loss = None | |
details = {} | |
B, N, D = descs1.shape | |
if N <= self.blocksize: # Blocks are larger than provided descs, compute regular loss | |
loss = self.criterion(descs1, descs2, valid_matches, euc=euc) | |
else: # Compute criterion on the blockdiagonal only, after shuffling | |
# Shuffle if necessary | |
matches_perm = slice(None) | |
if shuffle: | |
matches_perm = np.stack([rng.choice(range(N), size=N, replace=False) for _ in range(B)]) | |
batchid = torch.tile(torch.arange(B), (N, 1)).T | |
matches_perm = batchid, matches_perm | |
descs1 = descs1[matches_perm] | |
descs2 = descs2[matches_perm] | |
valid_matches = valid_matches[matches_perm] | |
assert N % self.blocksize == 0, "Error, can't chunk block-diagonal, please check blocksize" | |
n_chunks = N // self.blocksize | |
descs1 = descs1.reshape([B * n_chunks, self.blocksize, D]) # [B*(N//blocksize), blocksize, D] | |
descs2 = descs2.reshape([B * n_chunks, self.blocksize, D]) # [B*(N//blocksize), blocksize, D] | |
valid_matches = valid_matches.view([B * n_chunks, self.blocksize]) | |
loss = self.criterion(descs1, descs2, valid_matches, euc=euc) | |
if self.withconf: | |
confs1, confs2 = map(lambda x: x[matches_perm], (confs1, confs2)) # apply perm to confidences if needed | |
if self.withconf: | |
# split confidences between positives/negatives for loss computation | |
details['conf_pos'] = map(lambda x: x[valid_matches.view(B, -1)], (confs1, confs2)) | |
details['conf_neg'] = map(lambda x: x[~valid_matches.view(B, -1)], (confs1, confs2)) | |
details['Conf1_std'] = confs1.std() | |
details['Conf2_std'] = confs2.std() | |
return loss, details | |
def compute_loss(self, gt1, gt2, pred1, pred2, **kw): | |
# Gather preds and GT | |
descs1, descs2, confs1, confs2, valid_matches, monitoring = self.get_matching_descs( | |
gt1, gt2, pred1, pred2, **kw) | |
# loss on matches | |
loss, details = self.blockwise_criterion(descs1, descs2, confs1, confs2, | |
valid_matches, euc=monitoring.pop('use_euclidean_dist', False)) | |
details[type(self).__name__] = float(loss.mean()) | |
return loss, (details | monitoring) | |
class ConfMatchingLoss(ConfLoss): | |
""" Weight matching by learned confidence. Same as ConfLoss but for a matching criterion | |
Assuming the input matching_loss is a match-level loss. | |
""" | |
def __init__(self, pixel_loss, alpha=1., confmode='prod', neg_conf_loss_quantile=False): | |
super().__init__(pixel_loss, alpha) | |
self.pixel_loss.withconf = True | |
self.confmode = confmode | |
self.neg_conf_loss_quantile = neg_conf_loss_quantile | |
def aggregate_confs(self, confs1, confs2): # get the confidences resulting from the two view predictions | |
if self.confmode == 'prod': | |
confs = confs1 * confs2 if confs1 is not None and confs2 is not None else 1. | |
elif self.confmode == 'mean': | |
confs = .5 * (confs1 + confs2) if confs1 is not None and confs2 is not None else 1. | |
else: | |
raise ValueError(f"Unknown conf mode {self.confmode}") | |
return confs | |
def compute_loss(self, gt1, gt2, pred1, pred2, **kw): | |
# compute per-pixel loss | |
loss, details = self.pixel_loss(gt1, gt2, pred1, pred2, **kw) | |
# Recover confidences for positive and negative samples | |
conf1_pos, conf2_pos = details.pop('conf_pos') | |
conf1_neg, conf2_neg = details.pop('conf_neg') | |
conf_pos = self.aggregate_confs(conf1_pos, conf2_pos) | |
# weight Matching loss by confidence on positives | |
conf_pos, log_conf_pos = self.get_conf_log(conf_pos) | |
conf_loss = loss * conf_pos - self.alpha * log_conf_pos | |
# average + nan protection (in case of no valid pixels at all) | |
conf_loss = conf_loss.mean() if conf_loss.numel() > 0 else 0 | |
# Add negative confs loss to give some supervision signal to confidences for pixels that are not matched in GT | |
if self.neg_conf_loss_quantile: | |
conf_neg = torch.cat([conf1_neg, conf2_neg]) | |
conf_neg, log_conf_neg = self.get_conf_log(conf_neg) | |
# recover quantile that will be used for negatives loss value assignment | |
neg_loss_value = torch.quantile(loss, self.neg_conf_loss_quantile).detach() | |
neg_loss = neg_loss_value * conf_neg - self.alpha * log_conf_neg | |
neg_loss = neg_loss.mean() if neg_loss.numel() > 0 else 0 | |
conf_loss = conf_loss + neg_loss | |
return conf_loss, dict(matching_conf_loss=float(conf_loss), **details) | |