Spaces:
Sleeping
Sleeping
# Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# Matches Triangulation Utils | |
# -------------------------------------------------------- | |
import numpy as np | |
import torch | |
# Batched Matches Triangulation | |
def batched_triangulate(pts2d, # [B, Ncams, Npts, 2] | |
proj_mats): # [B, Ncams, 3, 4] I@E projection matrix | |
B, Ncams, Npts, two = pts2d.shape | |
assert two==2 | |
assert proj_mats.shape == (B, Ncams, 3, 4) | |
# P - xP | |
x = proj_mats[...,0,:][...,None,:] - torch.einsum('bij,bik->bijk', pts2d[...,0], proj_mats[...,2,:]) # [B, Ncams, Npts, 4] | |
y = proj_mats[...,1,:][...,None,:] - torch.einsum('bij,bik->bijk', pts2d[...,1], proj_mats[...,2,:]) # [B, Ncams, Npts, 4] | |
eq = torch.cat([x, y], dim=1).transpose(1, 2) # [B, Npts, 2xNcams, 4] | |
return torch.linalg.lstsq(eq[...,:3], -eq[...,3]).solution | |
def matches_to_depths(intrinsics, # input camera intrinsics [B, Ncams, 3, 3] | |
extrinsics, # input camera extrinsics [B, Ncams, 3, 4] | |
matches, # input correspondences [B, Ncams, Npts, 2] | |
batchsize=16, # bs for batched processing | |
min_num_valids_ratio=.3 # at least this ratio of image pairs need to predict a match for a given pixel of img1 | |
): | |
B, Nv, H, W, five = matches.shape | |
min_num_valids = np.floor(Nv*min_num_valids_ratio) | |
out_aggregated_points, out_depths, out_confs = [], [], [] | |
for b in range(B//batchsize+1): # batched processing | |
start, stop = b*batchsize,min(B,(b+1)*batchsize) | |
sub_batch=slice(start,stop) | |
sub_batchsize = stop-start | |
if sub_batchsize==0:continue | |
points1, points2, confs = matches[sub_batch, ..., :2], matches[sub_batch, ..., 2:4], matches[sub_batch, ..., -1] | |
allpoints = torch.cat([points1.view([sub_batchsize*Nv,1,H*W,2]), points2.view([sub_batchsize*Nv,1,H*W,2])],dim=1) # [BxNv, 2, HxW, 2] | |
allcam_Ps = intrinsics[sub_batch] @ extrinsics[sub_batch,:,:3,:] | |
cam_Ps1, cam_Ps2 = allcam_Ps[:,[0]].repeat([1,Nv,1,1]), allcam_Ps[:,1:] # [B, Nv, 3, 4] | |
formatted_camPs = torch.cat([cam_Ps1.reshape([sub_batchsize*Nv,1,3,4]), cam_Ps2.reshape([sub_batchsize*Nv,1,3,4])],dim=1) # [BxNv, 2, 3, 4] | |
# Triangulate matches to 3D | |
points_3d_world = batched_triangulate(allpoints, formatted_camPs) # [BxNv, HxW, three] | |
# Aggregate pairwise predictions | |
points_3d_world = points_3d_world.view([sub_batchsize,Nv,H,W,3]) | |
valids = points_3d_world.isfinite() | |
valids_sum = valids.sum(dim=-1) | |
validsuni=valids_sum.unique() | |
assert torch.all(torch.logical_or(validsuni == 0 , validsuni == 3)), "Error, can only be nan for none or all XYZ values, not a subset" | |
confs[valids_sum==0] = 0. | |
points_3d_world = points_3d_world*confs[...,None] | |
# Take care of NaNs | |
normalization = confs.sum(dim=1)[:,None].repeat(1,Nv,1,1) | |
normalization[normalization <= 1e-5] = 1. | |
points_3d_world[valids] /= normalization[valids_sum==3][:,None].repeat(1,3).view(-1) | |
points_3d_world[~valids] = 0. | |
aggregated_points = points_3d_world.sum(dim=1) # weighted average (by confidence value) ignoring nans | |
# Reset invalid values to nans, with a min visibility threshold | |
aggregated_points[valids_sum.sum(dim=1)/3 <= min_num_valids] = torch.nan | |
# From 3D to depths | |
refcamE = extrinsics[sub_batch, 0] | |
points_3d_camera = (refcamE[:,:3, :3] @ aggregated_points.view(sub_batchsize,-1,3).transpose(-2,-1) + refcamE[:,:3,[3]]).transpose(-2,-1) # [B,HxW,3] | |
depths = points_3d_camera.view(sub_batchsize,H,W,3)[..., 2] # [B,H,W] | |
# Cat results | |
out_aggregated_points.append(aggregated_points.cpu()) | |
out_depths.append(depths.cpu()) | |
out_confs.append(confs.sum(dim=1).cpu()) | |
out_aggregated_points = torch.cat(out_aggregated_points,dim=0) | |
out_depths = torch.cat(out_depths,dim=0) | |
out_confs = torch.cat(out_confs,dim=0) | |
return out_aggregated_points, out_depths, out_confs | |