Spaces:
Sleeping
Sleeping
# Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# MASt3R Sparse Global Alignement | |
# -------------------------------------------------------- | |
from tqdm import tqdm | |
import roma | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
import os | |
from collections import namedtuple | |
from functools import lru_cache | |
from scipy import sparse as sp | |
import copy | |
from mast3r.utils.misc import mkdir_for, hash_md5 | |
from mast3r.cloud_opt.utils.losses import gamma_loss | |
from mast3r.cloud_opt.utils.schedules import linear_schedule, cosine_schedule | |
from mast3r.fast_nn import fast_reciprocal_NNs, merge_corres | |
import mast3r.utils.path_to_dust3r # noqa | |
from dust3r.utils.geometry import inv, geotrf # noqa | |
from dust3r.utils.device import to_cpu, to_numpy, todevice # noqa | |
from dust3r.post_process import estimate_focal_knowing_depth # noqa | |
from dust3r.optim_factory import adjust_learning_rate_by_lr # noqa | |
from dust3r.viz import SceneViz | |
class SparseGA(): | |
def __init__(self, img_paths, pairs_in, res_fine, anchors, canonical_paths=None): | |
def fetch_img(im): | |
def torgb(x): return (x[0].permute(1, 2, 0).numpy() * .5 + .5).clip(min=0., max=1.) | |
for im1, im2 in pairs_in: | |
if im1['instance'] == im: | |
return torgb(im1['img']) | |
if im2['instance'] == im: | |
return torgb(im2['img']) | |
self.canonical_paths = canonical_paths | |
self.img_paths = img_paths | |
self.imgs = [fetch_img(img) for img in img_paths] | |
self.intrinsics = res_fine['intrinsics'] | |
self.cam2w = res_fine['cam2w'] | |
self.depthmaps = res_fine['depthmaps'] | |
self.pts3d = res_fine['pts3d'] | |
self.pts3d_colors = [] | |
self.working_device = self.cam2w.device | |
for i in range(len(self.imgs)): | |
im = self.imgs[i] | |
x, y = anchors[i][0][..., :2].detach().cpu().numpy().T | |
self.pts3d_colors.append(im[y, x]) | |
assert self.pts3d_colors[-1].shape == self.pts3d[i].shape | |
self.n_imgs = len(self.imgs) | |
def get_focals(self): | |
return torch.tensor([ff[0, 0] for ff in self.intrinsics]).to(self.working_device) | |
def get_principal_points(self): | |
return torch.stack([ff[:2, -1] for ff in self.intrinsics]).to(self.working_device) | |
def get_im_poses(self): | |
return self.cam2w | |
def get_sparse_pts3d(self): | |
return self.pts3d | |
def get_dense_pts3d(self, clean_depth=True, subsample=8): | |
assert self.canonical_paths, 'cache_path is required for dense 3d points' | |
device = self.cam2w.device | |
confs = [] | |
base_focals = [] | |
anchors = {} | |
for i, canon_path in enumerate(self.canonical_paths): | |
(canon, canon2, conf), focal = torch.load(canon_path, map_location=device) | |
confs.append(conf) | |
base_focals.append(focal) | |
H, W = conf.shape | |
pixels = torch.from_numpy(np.mgrid[:W, :H].T.reshape(-1, 2)).float().to(device) | |
idxs, offsets = anchor_depth_offsets(canon2, {i: (pixels, None)}, subsample=subsample) | |
anchors[i] = (pixels, idxs[i], offsets[i]) | |
# densify sparse depthmaps | |
pts3d, depthmaps = make_pts3d(anchors, self.intrinsics, self.cam2w, [ | |
d.ravel() for d in self.depthmaps], base_focals=base_focals, ret_depth=True) | |
return pts3d, depthmaps, confs | |
def get_pts3d_colors(self): | |
return self.pts3d_colors | |
def get_depthmaps(self): | |
return self.depthmaps | |
def get_masks(self): | |
return [slice(None, None) for _ in range(len(self.imgs))] | |
def show(self, show_cams=True): | |
pts3d, _, confs = self.get_dense_pts3d() | |
show_reconstruction(self.imgs, self.intrinsics if show_cams else None, self.cam2w, | |
[p.clip(min=-50, max=50) for p in pts3d], | |
masks=[c > 1 for c in confs]) | |
def convert_dust3r_pairs_naming(imgs, pairs_in): | |
for pair_id in range(len(pairs_in)): | |
for i in range(2): | |
pairs_in[pair_id][i]['instance'] = imgs[pairs_in[pair_id][i]['idx']] | |
return pairs_in | |
def sparse_global_alignment(imgs, pairs_in, cache_path, model, subsample=8, desc_conf='desc_conf', | |
device='cuda', dtype=torch.float32, shared_intrinsics=False, **kw): | |
""" Sparse alignment with MASt3R | |
imgs: list of image paths | |
cache_path: path where to dump temporary files (str) | |
lr1, niter1: learning rate and #iterations for coarse global alignment (3D matching) | |
lr2, niter2: learning rate and #iterations for refinement (2D reproj error) | |
lora_depth: smart dimensionality reduction with depthmaps | |
""" | |
# Convert pair naming convention from dust3r to mast3r | |
pairs_in = convert_dust3r_pairs_naming(imgs, pairs_in) | |
# forward pass | |
pairs, cache_path = forward_mast3r(pairs_in, model, | |
cache_path=cache_path, subsample=subsample, | |
desc_conf=desc_conf, device=device) | |
# extract canonical pointmaps | |
tmp_pairs, pairwise_scores, canonical_views, canonical_paths, preds_21 = \ | |
prepare_canonical_data(imgs, pairs, subsample, cache_path=cache_path, mode='avg-angle', device=device) | |
# compute minimal spanning tree | |
mst = compute_min_spanning_tree(pairwise_scores) | |
# remove all edges not in the spanning tree? | |
# min_spanning_tree = {(imgs[i],imgs[j]) for i,j in mst[1]} | |
# tmp_pairs = {(a,b):v for (a,b),v in tmp_pairs.items() if {(a,b),(b,a)} & min_spanning_tree} | |
# smartly combine all useful data | |
imsizes, pps, base_focals, core_depth, anchors, corres, corres2d, preds_21 = \ | |
condense_data(imgs, tmp_pairs, canonical_views, preds_21, dtype) | |
imgs, res_coarse, res_fine = sparse_scene_optimizer( | |
imgs, subsample, imsizes, pps, base_focals, core_depth, anchors, corres, corres2d, preds_21, canonical_paths, mst, | |
shared_intrinsics=shared_intrinsics, cache_path=cache_path, device=device, dtype=dtype, **kw) | |
return SparseGA(imgs, pairs_in, res_fine or res_coarse, anchors, canonical_paths) | |
def sparse_scene_optimizer(imgs, subsample, imsizes, pps, base_focals, core_depth, anchors, corres, corres2d, | |
preds_21, canonical_paths, mst, cache_path, | |
lr1=0.2, niter1=500, loss1=gamma_loss(1.1), | |
lr2=0.02, niter2=500, loss2=gamma_loss(0.4), | |
lossd=gamma_loss(1.1), | |
opt_pp=True, opt_depth=True, | |
schedule=cosine_schedule, depth_mode='add', exp_depth=False, | |
lora_depth=False, # dict(k=96, gamma=15, min_norm=.5), | |
shared_intrinsics=False, | |
init={}, device='cuda', dtype=torch.float32, | |
matching_conf_thr=5., loss_dust3r_w=0.01, | |
verbose=True, dbg=()): | |
init = copy.deepcopy(init) | |
# extrinsic parameters | |
vec0001 = torch.tensor((0, 0, 0, 1), dtype=dtype, device=device) | |
quats = [nn.Parameter(vec0001.clone()) for _ in range(len(imgs))] | |
trans = [nn.Parameter(torch.zeros(3, device=device, dtype=dtype)) for _ in range(len(imgs))] | |
# initialize | |
ones = torch.ones((len(imgs), 1), device=device, dtype=dtype) | |
median_depths = torch.ones(len(imgs), device=device, dtype=dtype) | |
for img in imgs: | |
idx = imgs.index(img) | |
init_values = init.setdefault(img, {}) | |
if verbose and init_values: | |
print(f' >> initializing img=...{img[-25:]} [{idx}] for {set(init_values)}') | |
K = init_values.get('intrinsics') | |
if K is not None: | |
K = K.detach() | |
focal = K[:2, :2].diag().mean() | |
pp = K[:2, 2] | |
base_focals[idx] = focal | |
pps[idx] = pp | |
pps[idx] /= imsizes[idx] # default principal_point would be (0.5, 0.5) | |
depth = init_values.get('depthmap') | |
if depth is not None: | |
core_depth[idx] = depth.detach() | |
median_depths[idx] = med_depth = core_depth[idx].median() | |
core_depth[idx] /= med_depth | |
cam2w = init_values.get('cam2w') | |
if cam2w is not None: | |
rot = cam2w[:3, :3].detach() | |
cam_center = cam2w[:3, 3].detach() | |
quats[idx].data[:] = roma.rotmat_to_unitquat(rot) | |
trans_offset = med_depth * torch.cat((imsizes[idx] / base_focals[idx] * (0.5 - pps[idx]), ones[:1, 0])) | |
trans[idx].data[:] = cam_center + rot @ trans_offset | |
del rot | |
assert False, 'inverse kinematic chain not yet implemented' | |
# intrinsics parameters | |
if shared_intrinsics: | |
# Optimize a single set of intrinsics for all cameras. Use averages as init. | |
confs = torch.stack([torch.load(pth)[0][2].mean() for pth in canonical_paths]).to(pps) | |
weighting = confs / confs.sum() | |
pp = nn.Parameter((weighting @ pps).to(dtype)) | |
pps = [pp for _ in range(len(imgs))] | |
focal_m = weighting @ base_focals | |
log_focal = nn.Parameter(focal_m.view(1).log().to(dtype)) | |
log_focals = [log_focal for _ in range(len(imgs))] | |
else: | |
pps = [nn.Parameter(pp.to(dtype)) for pp in pps] | |
log_focals = [nn.Parameter(f.view(1).log().to(dtype)) for f in base_focals] | |
diags = imsizes.float().norm(dim=1) | |
min_focals = 0.25 * diags # diag = 1.2~1.4*max(W,H) => beta >= 1/(2*1.2*tan(fov/2)) ~= 0.26 | |
max_focals = 10 * diags | |
assert len(mst[1]) == len(pps) - 1 | |
def make_K_cam_depth(log_focals, pps, trans, quats, log_sizes, core_depth): | |
# make intrinsics | |
focals = torch.cat(log_focals).exp().clip(min=min_focals, max=max_focals) | |
pps = torch.stack(pps) | |
K = torch.eye(3, dtype=dtype, device=device)[None].expand(len(imgs), 3, 3).clone() | |
K[:, 0, 0] = K[:, 1, 1] = focals | |
K[:, 0:2, 2] = pps * imsizes | |
if trans is None: | |
return K | |
# security! optimization is always trying to crush the scale down | |
sizes = torch.cat(log_sizes).exp() | |
global_scaling = 1 / sizes.min() | |
# compute distance of camera to focal plane | |
# tan(fov) = W/2 / focal | |
z_cameras = sizes * median_depths * focals / base_focals | |
# make extrinsic | |
rel_cam2cam = torch.eye(4, dtype=dtype, device=device)[None].expand(len(imgs), 4, 4).clone() | |
rel_cam2cam[:, :3, :3] = roma.unitquat_to_rotmat(F.normalize(torch.stack(quats), dim=1)) | |
rel_cam2cam[:, :3, 3] = torch.stack(trans) | |
# camera are defined as a kinematic chain | |
tmp_cam2w = [None] * len(K) | |
tmp_cam2w[mst[0]] = rel_cam2cam[mst[0]] | |
for i, j in mst[1]: | |
# i is the cam_i_to_world reference, j is the relative pose = cam_j_to_cam_i | |
tmp_cam2w[j] = tmp_cam2w[i] @ rel_cam2cam[j] | |
tmp_cam2w = torch.stack(tmp_cam2w) | |
# smart reparameterizaton of cameras | |
trans_offset = z_cameras.unsqueeze(1) * torch.cat((imsizes / focals.unsqueeze(1) * (0.5 - pps), ones), dim=-1) | |
new_trans = global_scaling * (tmp_cam2w[:, :3, 3:4] - tmp_cam2w[:, :3, :3] @ trans_offset.unsqueeze(-1)) | |
cam2w = torch.cat((torch.cat((tmp_cam2w[:, :3, :3], new_trans), dim=2), | |
vec0001.view(1, 1, 4).expand(len(K), 1, 4)), dim=1) | |
depthmaps = [] | |
for i in range(len(imgs)): | |
core_depth_img = core_depth[i] | |
if exp_depth: | |
core_depth_img = core_depth_img.exp() | |
if lora_depth: # compute core_depth as a low-rank decomposition of 3d points | |
core_depth_img = lora_depth_proj[i] @ core_depth_img | |
if depth_mode == 'add': | |
core_depth_img = z_cameras[i] + (core_depth_img - 1) * (median_depths[i] * sizes[i]) | |
elif depth_mode == 'mul': | |
core_depth_img = z_cameras[i] * core_depth_img | |
else: | |
raise ValueError(f'Bad {depth_mode=}') | |
depthmaps.append(global_scaling * core_depth_img) | |
return K, (inv(cam2w), cam2w), depthmaps | |
K = make_K_cam_depth(log_focals, pps, None, None, None, None) | |
if shared_intrinsics: | |
print('init focal (shared) = ', to_numpy(K[0, 0, 0]).round(2)) | |
else: | |
print('init focals =', to_numpy(K[:, 0, 0])) | |
# spectral low-rank projection of depthmaps | |
if lora_depth: | |
core_depth, lora_depth_proj = spectral_projection_of_depthmaps( | |
imgs, K, core_depth, subsample, cache_path=cache_path, **lora_depth) | |
if exp_depth: | |
core_depth = [d.clip(min=1e-4).log() for d in core_depth] | |
core_depth = [nn.Parameter(d.ravel().to(dtype)) for d in core_depth] | |
log_sizes = [nn.Parameter(torch.zeros(1, dtype=dtype, device=device)) for _ in range(len(imgs))] | |
# Fetch img slices | |
_, confs_sum, imgs_slices = corres | |
# Define which pairs are fine to use with matching | |
def matching_check(x): return x.max() > matching_conf_thr | |
is_matching_ok = {} | |
for s in imgs_slices: | |
is_matching_ok[s.img1, s.img2] = matching_check(s.confs) | |
# Prepare slices and corres for losses | |
dust3r_slices = [s for s in imgs_slices if not is_matching_ok[s.img1, s.img2]] | |
loss3d_slices = [s for s in imgs_slices if is_matching_ok[s.img1, s.img2]] | |
cleaned_corres2d = [] | |
for cci, (img1, pix1, confs, confsum, imgs_slices) in enumerate(corres2d): | |
cf_sum = 0 | |
pix1_filtered = [] | |
confs_filtered = [] | |
curstep = 0 | |
cleaned_slices = [] | |
for img2, slice2 in imgs_slices: | |
if is_matching_ok[img1, img2]: | |
tslice = slice(curstep, curstep + slice2.stop - slice2.start, slice2.step) | |
pix1_filtered.append(pix1[tslice]) | |
confs_filtered.append(confs[tslice]) | |
cleaned_slices.append((img2, slice2)) | |
curstep += slice2.stop - slice2.start | |
if pix1_filtered != []: | |
pix1_filtered = torch.cat(pix1_filtered) | |
confs_filtered = torch.cat(confs_filtered) | |
cf_sum = confs_filtered.sum() | |
cleaned_corres2d.append((img1, pix1_filtered, confs_filtered, cf_sum, cleaned_slices)) | |
def loss_dust3r(cam2w, pts3d, pix_loss): | |
# In the case no correspondence could be established, fallback to DUSt3R GA regression loss formulation (sparsified) | |
loss = 0. | |
cf_sum = 0. | |
for s in dust3r_slices: | |
if init[imgs[s.img1]].get('freeze') and init[imgs[s.img2]].get('freeze'): | |
continue | |
# fallback to dust3r regression | |
tgt_pts, tgt_confs = preds_21[imgs[s.img2]][imgs[s.img1]] | |
tgt_pts = geotrf(cam2w[s.img2], tgt_pts) | |
cf_sum += tgt_confs.sum() | |
loss += tgt_confs @ pix_loss(pts3d[s.img1], tgt_pts) | |
return loss / cf_sum if cf_sum != 0. else 0. | |
def loss_3d(K, w2cam, pts3d, pix_loss): | |
# For each correspondence, we have two 3D points (one for each image of the pair). | |
# For each 3D point, we have 2 reproj errors | |
if any(v.get('freeze') for v in init.values()): | |
pts3d_1 = [] | |
pts3d_2 = [] | |
confs = [] | |
for s in loss3d_slices: | |
if init[imgs[s.img1]].get('freeze') and init[imgs[s.img2]].get('freeze'): | |
continue | |
pts3d_1.append(pts3d[s.img1][s.slice1]) | |
pts3d_2.append(pts3d[s.img2][s.slice2]) | |
confs.append(s.confs) | |
else: | |
pts3d_1 = [pts3d[s.img1][s.slice1] for s in loss3d_slices] | |
pts3d_2 = [pts3d[s.img2][s.slice2] for s in loss3d_slices] | |
confs = [s.confs for s in loss3d_slices] | |
if pts3d_1 != []: | |
confs = torch.cat(confs) | |
pts3d_1 = torch.cat(pts3d_1) | |
pts3d_2 = torch.cat(pts3d_2) | |
loss = confs @ pix_loss(pts3d_1, pts3d_2) | |
cf_sum = confs.sum() | |
else: | |
loss = 0. | |
cf_sum = 1. | |
return loss / cf_sum | |
def loss_2d(K, w2cam, pts3d, pix_loss): | |
# For each correspondence, we have two 3D points (one for each image of the pair). | |
# For each 3D point, we have 2 reproj errors | |
proj_matrix = K @ w2cam[:, :3] | |
loss = npix = 0 | |
for img1, pix1_filtered, confs_filtered, cf_sum, cleaned_slices in cleaned_corres2d: | |
if init[imgs[img1]].get('freeze', 0) >= 1: | |
continue # no need | |
pts3d_in_img1 = [pts3d[img2][slice2] for img2, slice2 in cleaned_slices] | |
if pts3d_in_img1 != []: | |
pts3d_in_img1 = torch.cat(pts3d_in_img1) | |
loss += confs_filtered @ pix_loss(pix1_filtered, reproj2d(proj_matrix[img1], pts3d_in_img1)) | |
npix += confs_filtered.sum() | |
return loss / npix if npix != 0 else 0. | |
def optimize_loop(loss_func, lr_base, niter, pix_loss, lr_end=0): | |
# create optimizer | |
params = pps + log_focals + quats + trans + log_sizes + core_depth | |
optimizer = torch.optim.Adam(params, lr=1, weight_decay=0, betas=(0.9, 0.9)) | |
ploss = pix_loss if 'meta' in repr(pix_loss) else (lambda a: pix_loss) | |
with tqdm(total=niter) as bar: | |
for iter in range(niter or 1): | |
K, (w2cam, cam2w), depthmaps = make_K_cam_depth(log_focals, pps, trans, quats, log_sizes, core_depth) | |
pts3d = make_pts3d(anchors, K, cam2w, depthmaps, base_focals=base_focals) | |
if niter == 0: | |
break | |
alpha = (iter / niter) | |
lr = schedule(alpha, lr_base, lr_end) | |
adjust_learning_rate_by_lr(optimizer, lr) | |
pix_loss = ploss(1 - alpha) | |
optimizer.zero_grad() | |
loss = loss_func(K, w2cam, pts3d, pix_loss) + loss_dust3r_w * loss_dust3r(cam2w, pts3d, lossd) | |
loss.backward() | |
optimizer.step() | |
# make sure the pose remains well optimizable | |
for i in range(len(imgs)): | |
quats[i].data[:] /= quats[i].data.norm() | |
loss = float(loss) | |
if loss != loss: | |
break # NaN loss | |
bar.set_postfix_str(f'{lr=:.4f}, {loss=:.3f}') | |
bar.update(1) | |
if niter: | |
print(f'>> final loss = {loss}') | |
return dict(intrinsics=K.detach(), cam2w=cam2w.detach(), | |
depthmaps=[d.detach() for d in depthmaps], pts3d=[p.detach() for p in pts3d]) | |
# at start, don't optimize 3d points | |
for i, img in enumerate(imgs): | |
trainable = not (init[img].get('freeze')) | |
pps[i].requires_grad_(False) | |
log_focals[i].requires_grad_(False) | |
quats[i].requires_grad_(trainable) | |
trans[i].requires_grad_(trainable) | |
log_sizes[i].requires_grad_(trainable) | |
core_depth[i].requires_grad_(False) | |
res_coarse = optimize_loop(loss_3d, lr_base=lr1, niter=niter1, pix_loss=loss1) | |
res_fine = None | |
if niter2: | |
# now we can optimize 3d points | |
for i, img in enumerate(imgs): | |
if init[img].get('freeze', 0) >= 1: | |
continue | |
pps[i].requires_grad_(bool(opt_pp)) | |
log_focals[i].requires_grad_(True) | |
core_depth[i].requires_grad_(opt_depth) | |
# refinement with 2d reproj | |
res_fine = optimize_loop(loss_2d, lr_base=lr2, niter=niter2, pix_loss=loss2) | |
K = make_K_cam_depth(log_focals, pps, None, None, None, None) | |
if shared_intrinsics: | |
print('Final focal (shared) = ', to_numpy(K[0, 0, 0]).round(2)) | |
else: | |
print('Final focals =', to_numpy(K[:, 0, 0])) | |
return imgs, res_coarse, res_fine | |
def mask110(device, dtype): | |
return torch.tensor((1, 1, 0), device=device, dtype=dtype) | |
def proj3d(inv_K, pixels, z): | |
if pixels.shape[-1] == 2: | |
pixels = torch.cat((pixels, torch.ones_like(pixels[..., :1])), dim=-1) | |
return z.unsqueeze(-1) * (pixels * inv_K.diag() + inv_K[:, 2] * mask110(z.device, z.dtype)) | |
def make_pts3d(anchors, K, cam2w, depthmaps, base_focals=None, ret_depth=False): | |
focals = K[:, 0, 0] | |
invK = inv(K) | |
all_pts3d = [] | |
depth_out = [] | |
for img, (pixels, idxs, offsets) in anchors.items(): | |
# from depthmaps to 3d points | |
if base_focals is None: | |
pass | |
else: | |
# compensate for focal | |
# depth + depth * (offset - 1) * base_focal / focal | |
# = depth * (1 + (offset - 1) * (base_focal / focal)) | |
offsets = 1 + (offsets - 1) * (base_focals[img] / focals[img]) | |
pts3d = proj3d(invK[img], pixels, depthmaps[img][idxs] * offsets) | |
if ret_depth: | |
depth_out.append(pts3d[..., 2]) # before camera rotation | |
# rotate to world coordinate | |
pts3d = geotrf(cam2w[img], pts3d) | |
all_pts3d.append(pts3d) | |
if ret_depth: | |
return all_pts3d, depth_out | |
return all_pts3d | |
def make_dense_pts3d(intrinsics, cam2w, depthmaps, canonical_paths, subsample, device='cuda'): | |
base_focals = [] | |
anchors = {} | |
confs = [] | |
for i, canon_path in enumerate(canonical_paths): | |
(canon, canon2, conf), focal = torch.load(canon_path, map_location=device) | |
confs.append(conf) | |
base_focals.append(focal) | |
H, W = conf.shape | |
pixels = torch.from_numpy(np.mgrid[:W, :H].T.reshape(-1, 2)).float().to(device) | |
idxs, offsets = anchor_depth_offsets(canon2, {i: (pixels, None)}, subsample=subsample) | |
anchors[i] = (pixels, idxs[i], offsets[i]) | |
# densify sparse depthmaps | |
pts3d, depthmaps_out = make_pts3d(anchors, intrinsics, cam2w, [ | |
d.ravel() for d in depthmaps], base_focals=base_focals, ret_depth=True) | |
return pts3d, depthmaps_out, confs | |
def forward_mast3r(pairs, model, cache_path, desc_conf='desc_conf', | |
device='cuda', subsample=8, **matching_kw): | |
res_paths = {} | |
for img1, img2 in tqdm(pairs): | |
idx1 = hash_md5(img1['instance']) | |
idx2 = hash_md5(img2['instance']) | |
path1 = cache_path + f'/forward/{idx1}/{idx2}.pth' | |
path2 = cache_path + f'/forward/{idx2}/{idx1}.pth' | |
path_corres = cache_path + f'/corres_conf={desc_conf}_{subsample=}/{idx1}-{idx2}.pth' | |
path_corres2 = cache_path + f'/corres_conf={desc_conf}_{subsample=}/{idx2}-{idx1}.pth' | |
if os.path.isfile(path_corres2) and not os.path.isfile(path_corres): | |
score, (xy1, xy2, confs) = torch.load(path_corres2) | |
torch.save((score, (xy2, xy1, confs)), path_corres) | |
if not all(os.path.isfile(p) for p in (path1, path2, path_corres)): | |
if model is None: | |
continue | |
res = symmetric_inference(model, img1, img2, device=device) | |
X11, X21, X22, X12 = [r['pts3d'][0] for r in res] | |
C11, C21, C22, C12 = [r['conf'][0] for r in res] | |
descs = [r['desc'][0] for r in res] | |
qonfs = [r[desc_conf][0] for r in res] | |
# save | |
torch.save(to_cpu((X11, C11, X21, C21)), mkdir_for(path1)) | |
torch.save(to_cpu((X22, C22, X12, C12)), mkdir_for(path2)) | |
# perform reciprocal matching | |
corres = extract_correspondences(descs, qonfs, device=device, subsample=subsample) | |
conf_score = (C11.mean() * C12.mean() * C21.mean() * C22.mean()).sqrt().sqrt() | |
matching_score = (float(conf_score), float(corres[2].sum()), len(corres[2])) | |
if cache_path is not None: | |
torch.save((matching_score, corres), mkdir_for(path_corres)) | |
res_paths[img1['instance'], img2['instance']] = (path1, path2), path_corres | |
del model | |
torch.cuda.empty_cache() | |
return res_paths, cache_path | |
def symmetric_inference(model, img1, img2, device): | |
shape1 = torch.from_numpy(img1['true_shape']).to(device, non_blocking=True) | |
shape2 = torch.from_numpy(img2['true_shape']).to(device, non_blocking=True) | |
img1 = img1['img'].to(device, non_blocking=True) | |
img2 = img2['img'].to(device, non_blocking=True) | |
# compute encoder only once | |
feat1, feat2, pos1, pos2 = model._encode_image_pairs(img1, img2, shape1, shape2) | |
def decoder(feat1, feat2, pos1, pos2, shape1, shape2): | |
dec1, dec2 = model._decoder(feat1, pos1, feat2, pos2) | |
with torch.cuda.amp.autocast(enabled=False): | |
res1 = model._downstream_head(1, [tok.float() for tok in dec1], shape1) | |
res2 = model._downstream_head(2, [tok.float() for tok in dec2], shape2) | |
return res1, res2 | |
# decoder 1-2 | |
res11, res21 = decoder(feat1, feat2, pos1, pos2, shape1, shape2) | |
# decoder 2-1 | |
res22, res12 = decoder(feat2, feat1, pos2, pos1, shape2, shape1) | |
return (res11, res21, res22, res12) | |
def extract_correspondences(feats, qonfs, subsample=8, device=None, ptmap_key='pred_desc'): | |
feat11, feat21, feat22, feat12 = feats | |
qonf11, qonf21, qonf22, qonf12 = qonfs | |
assert feat11.shape[:2] == feat12.shape[:2] == qonf11.shape == qonf12.shape | |
assert feat21.shape[:2] == feat22.shape[:2] == qonf21.shape == qonf22.shape | |
if '3d' in ptmap_key: | |
opt = dict(device='cpu', workers=32) | |
else: | |
opt = dict(device=device, dist='dot', block_size=2**13) | |
# matching the two pairs | |
idx1 = [] | |
idx2 = [] | |
qonf1 = [] | |
qonf2 = [] | |
# TODO add non symmetric / pixel_tol options | |
for A, B, QA, QB in [(feat11, feat21, qonf11.cpu(), qonf21.cpu()), | |
(feat12, feat22, qonf12.cpu(), qonf22.cpu())]: | |
nn1to2 = fast_reciprocal_NNs(A, B, subsample_or_initxy1=subsample, ret_xy=False, **opt) | |
nn2to1 = fast_reciprocal_NNs(B, A, subsample_or_initxy1=subsample, ret_xy=False, **opt) | |
idx1.append(np.r_[nn1to2[0], nn2to1[1]]) | |
idx2.append(np.r_[nn1to2[1], nn2to1[0]]) | |
qonf1.append(QA.ravel()[idx1[-1]]) | |
qonf2.append(QB.ravel()[idx2[-1]]) | |
# merge corres from opposite pairs | |
H1, W1 = feat11.shape[:2] | |
H2, W2 = feat22.shape[:2] | |
cat = np.concatenate | |
xy1, xy2, idx = merge_corres(cat(idx1), cat(idx2), (H1, W1), (H2, W2), ret_xy=True, ret_index=True) | |
corres = (xy1.copy(), xy2.copy(), np.sqrt(cat(qonf1)[idx] * cat(qonf2)[idx])) | |
return todevice(corres, device) | |
def prepare_canonical_data(imgs, tmp_pairs, subsample, order_imgs=False, min_conf_thr=0, | |
cache_path=None, device='cuda', **kw): | |
canonical_views = {} | |
pairwise_scores = torch.zeros((len(imgs), len(imgs)), device=device) | |
canonical_paths = [] | |
preds_21 = {} | |
for img in tqdm(imgs): | |
if cache_path: | |
cache = os.path.join(cache_path, 'canon_views', hash_md5(img) + f'_{subsample=}_{kw=}.pth') | |
canonical_paths.append(cache) | |
try: | |
(canon, canon2, cconf), focal = torch.load(cache, map_location=device) | |
except IOError: | |
# cache does not exist yet, we create it! | |
canon = focal = None | |
# collect all pred1 | |
n_pairs = sum((img in pair) for pair in tmp_pairs) | |
ptmaps11 = None | |
pixels = {} | |
n = 0 | |
for (img1, img2), ((path1, path2), path_corres) in tmp_pairs.items(): | |
score = None | |
if img == img1: | |
X, C, X2, C2 = torch.load(path1, map_location=device) | |
score, (xy1, xy2, confs) = load_corres(path_corres, device, min_conf_thr) | |
pixels[img2] = xy1, confs | |
if img not in preds_21: | |
preds_21[img] = {} | |
# Subsample preds_21 | |
preds_21[img][img2] = X2[::subsample, ::subsample].reshape(-1, 3), C2[::subsample, ::subsample].ravel() | |
if img == img2: | |
X, C, X2, C2 = torch.load(path2, map_location=device) | |
score, (xy1, xy2, confs) = load_corres(path_corres, device, min_conf_thr) | |
pixels[img1] = xy2, confs | |
if img not in preds_21: | |
preds_21[img] = {} | |
preds_21[img][img1] = X2[::subsample, ::subsample].reshape(-1, 3), C2[::subsample, ::subsample].ravel() | |
if score is not None: | |
i, j = imgs.index(img1), imgs.index(img2) | |
# score = score[0] | |
# score = np.log1p(score[2]) | |
score = score[2] | |
pairwise_scores[i, j] = score | |
pairwise_scores[j, i] = score | |
if canon is not None: | |
continue | |
if ptmaps11 is None: | |
H, W = C.shape | |
ptmaps11 = torch.empty((n_pairs, H, W, 3), device=device) | |
confs11 = torch.empty((n_pairs, H, W), device=device) | |
ptmaps11[n] = X | |
confs11[n] = C | |
n += 1 | |
if canon is None: | |
canon, canon2, cconf = canonical_view(ptmaps11, confs11, subsample, **kw) | |
del ptmaps11 | |
del confs11 | |
# compute focals | |
H, W = canon.shape[:2] | |
pp = torch.tensor([W / 2, H / 2], device=device) | |
if focal is None: | |
focal = estimate_focal_knowing_depth(canon[None], pp, focal_mode='weiszfeld', min_focal=0.5, max_focal=3.5) | |
if cache: | |
torch.save(to_cpu(((canon, canon2, cconf), focal)), mkdir_for(cache)) | |
# extract depth offsets with correspondences | |
core_depth = canon[subsample // 2::subsample, subsample // 2::subsample, 2] | |
idxs, offsets = anchor_depth_offsets(canon2, pixels, subsample=subsample) | |
canonical_views[img] = (pp, (H, W), focal.view(1), core_depth, pixels, idxs, offsets) | |
return tmp_pairs, pairwise_scores, canonical_views, canonical_paths, preds_21 | |
def load_corres(path_corres, device, min_conf_thr): | |
score, (xy1, xy2, confs) = torch.load(path_corres, map_location=device) | |
valid = confs > min_conf_thr if min_conf_thr else slice(None) | |
# valid = (xy1 > 0).all(dim=1) & (xy2 > 0).all(dim=1) & (xy1 < 512).all(dim=1) & (xy2 < 512).all(dim=1) | |
# print(f'keeping {valid.sum()} / {len(valid)} correspondences') | |
return score, (xy1[valid], xy2[valid], confs[valid]) | |
PairOfSlices = namedtuple( | |
'ImgPair', 'img1, slice1, pix1, anchor_idxs1, img2, slice2, pix2, anchor_idxs2, confs, confs_sum') | |
def condense_data(imgs, tmp_paths, canonical_views, preds_21, dtype=torch.float32): | |
# aggregate all data properly | |
set_imgs = set(imgs) | |
principal_points = [] | |
shapes = [] | |
focals = [] | |
core_depth = [] | |
img_anchors = {} | |
tmp_pixels = {} | |
for idx1, img1 in enumerate(imgs): | |
# load stuff | |
pp, shape, focal, anchors, pixels_confs, idxs, offsets = canonical_views[img1] | |
principal_points.append(pp) | |
shapes.append(shape) | |
focals.append(focal) | |
core_depth.append(anchors) | |
img_uv1 = [] | |
img_idxs = [] | |
img_offs = [] | |
cur_n = [0] | |
for img2, (pixels, match_confs) in pixels_confs.items(): | |
if img2 not in set_imgs: | |
continue | |
assert len(pixels) == len(idxs[img2]) == len(offsets[img2]) | |
img_uv1.append(torch.cat((pixels, torch.ones_like(pixels[:, :1])), dim=-1)) | |
img_idxs.append(idxs[img2]) | |
img_offs.append(offsets[img2]) | |
cur_n.append(cur_n[-1] + len(pixels)) | |
# store the position of 3d points | |
tmp_pixels[img1, img2] = pixels.to(dtype), match_confs.to(dtype), slice(*cur_n[-2:]) | |
img_anchors[idx1] = (torch.cat(img_uv1), torch.cat(img_idxs), torch.cat(img_offs)) | |
all_confs = [] | |
imgs_slices = [] | |
corres2d = {img: [] for img in range(len(imgs))} | |
for img1, img2 in tmp_paths: | |
try: | |
pix1, confs1, slice1 = tmp_pixels[img1, img2] | |
pix2, confs2, slice2 = tmp_pixels[img2, img1] | |
except KeyError: | |
continue | |
img1 = imgs.index(img1) | |
img2 = imgs.index(img2) | |
confs = (confs1 * confs2).sqrt() | |
# prepare for loss_3d | |
all_confs.append(confs) | |
anchor_idxs1 = canonical_views[imgs[img1]][5][imgs[img2]] | |
anchor_idxs2 = canonical_views[imgs[img2]][5][imgs[img1]] | |
imgs_slices.append(PairOfSlices(img1, slice1, pix1, anchor_idxs1, | |
img2, slice2, pix2, anchor_idxs2, | |
confs, float(confs.sum()))) | |
# prepare for loss_2d | |
corres2d[img1].append((pix1, confs, img2, slice2)) | |
corres2d[img2].append((pix2, confs, img1, slice1)) | |
all_confs = torch.cat(all_confs) | |
corres = (all_confs, float(all_confs.sum()), imgs_slices) | |
def aggreg_matches(img1, list_matches): | |
pix1, confs, img2, slice2 = zip(*list_matches) | |
all_pix1 = torch.cat(pix1).to(dtype) | |
all_confs = torch.cat(confs).to(dtype) | |
return img1, all_pix1, all_confs, float(all_confs.sum()), [(j, sl2) for j, sl2 in zip(img2, slice2)] | |
corres2d = [aggreg_matches(img, m) for img, m in corres2d.items()] | |
imsizes = torch.tensor([(W, H) for H, W in shapes], device=pp.device) # (W,H) | |
principal_points = torch.stack(principal_points) | |
focals = torch.cat(focals) | |
# Subsample preds_21 | |
subsamp_preds_21 = {} | |
for imk, imv in preds_21.items(): | |
subsamp_preds_21[imk] = {} | |
for im2k, (pred, conf) in preds_21[imk].items(): | |
idxs = img_anchors[imgs.index(im2k)][1] | |
subsamp_preds_21[imk][im2k] = (pred[idxs], conf[idxs]) # anchors subsample | |
return imsizes, principal_points, focals, core_depth, img_anchors, corres, corres2d, subsamp_preds_21 | |
def canonical_view(ptmaps11, confs11, subsample, mode='avg-angle'): | |
assert len(ptmaps11) == len(confs11) > 0, 'not a single view1 for img={i}' | |
# canonical pointmap is just a weighted average | |
confs11 = confs11.unsqueeze(-1) - 0.999 | |
canon = (confs11 * ptmaps11).sum(0) / confs11.sum(0) | |
canon_depth = ptmaps11[..., 2].unsqueeze(1) | |
S = slice(subsample // 2, None, subsample) | |
center_depth = canon_depth[:, :, S, S] | |
center_depth = torch.clip(center_depth, min=torch.finfo(center_depth.dtype).eps) | |
stacked_depth = F.pixel_unshuffle(canon_depth, subsample) | |
stacked_confs = F.pixel_unshuffle(confs11[:, None, :, :, 0], subsample) | |
if mode == 'avg-reldepth': | |
rel_depth = stacked_depth / center_depth | |
stacked_canon = (stacked_confs * rel_depth).sum(dim=0) / stacked_confs.sum(dim=0) | |
canon2 = F.pixel_shuffle(stacked_canon.unsqueeze(0), subsample).squeeze() | |
elif mode == 'avg-angle': | |
xy = ptmaps11[..., 0:2].permute(0, 3, 1, 2) | |
stacked_xy = F.pixel_unshuffle(xy, subsample) | |
B, _, H, W = stacked_xy.shape | |
stacked_radius = (stacked_xy.view(B, 2, -1, H, W) - xy[:, :, None, S, S]).norm(dim=1) | |
stacked_radius.clip_(min=1e-8) | |
stacked_angle = torch.arctan((stacked_depth - center_depth) / stacked_radius) | |
avg_angle = (stacked_confs * stacked_angle).sum(dim=0) / stacked_confs.sum(dim=0) | |
# back to depth | |
stacked_depth = stacked_radius.mean(dim=0) * torch.tan(avg_angle) | |
canon2 = F.pixel_shuffle((1 + stacked_depth / canon[S, S, 2]).unsqueeze(0), subsample).squeeze() | |
else: | |
raise ValueError(f'bad {mode=}') | |
confs = (confs11.square().sum(dim=0) / confs11.sum(dim=0)).squeeze() | |
return canon, canon2, confs | |
def anchor_depth_offsets(canon_depth, pixels, subsample=8): | |
device = canon_depth.device | |
# create a 2D grid of anchor 3D points | |
H1, W1 = canon_depth.shape | |
yx = np.mgrid[subsample // 2:H1:subsample, subsample // 2:W1:subsample] | |
H2, W2 = yx.shape[1:] | |
cy, cx = yx.reshape(2, -1) | |
core_depth = canon_depth[cy, cx] | |
assert (core_depth > 0).all() | |
# slave 3d points (attached to core 3d points) | |
core_idxs = {} # core_idxs[img2] = {corr_idx:core_idx} | |
core_offs = {} # core_offs[img2] = {corr_idx:3d_offset} | |
for img2, (xy1, _confs) in pixels.items(): | |
px, py = xy1.long().T | |
# find nearest anchor == block quantization | |
core_idx = (py // subsample) * W2 + (px // subsample) | |
core_idxs[img2] = core_idx.to(device) | |
# compute relative depth offsets w.r.t. anchors | |
ref_z = core_depth[core_idx] | |
pts_z = canon_depth[py, px] | |
offset = pts_z / ref_z | |
core_offs[img2] = offset.detach().to(device) | |
return core_idxs, core_offs | |
def spectral_clustering(graph, k=None, normalized_cuts=False): | |
graph.fill_diagonal_(0) | |
# graph laplacian | |
degrees = graph.sum(dim=-1) | |
laplacian = torch.diag(degrees) - graph | |
if normalized_cuts: | |
i_inv = torch.diag(degrees.sqrt().reciprocal()) | |
laplacian = i_inv @ laplacian @ i_inv | |
# compute eigenvectors! | |
eigval, eigvec = torch.linalg.eigh(laplacian) | |
return eigval[:k], eigvec[:, :k] | |
def sim_func(p1, p2, gamma): | |
diff = (p1 - p2).norm(dim=-1) | |
avg_depth = (p1[:, :, 2] + p2[:, :, 2]) | |
rel_distance = diff / avg_depth | |
sim = torch.exp(-gamma * rel_distance.square()) | |
return sim | |
def backproj(K, depthmap, subsample): | |
H, W = depthmap.shape | |
uv = np.mgrid[subsample // 2:subsample * W:subsample, subsample // 2:subsample * H:subsample].T.reshape(H, W, 2) | |
xyz = depthmap.unsqueeze(-1) * geotrf(inv(K), todevice(uv, K.device), ncol=3) | |
return xyz | |
def spectral_projection_depth(K, depthmap, subsample, k=64, cache_path='', | |
normalized_cuts=True, gamma=7, min_norm=5): | |
try: | |
if cache_path: | |
cache_path = cache_path + f'_{k=}_norm={normalized_cuts}_{gamma=}.pth' | |
lora_proj = torch.load(cache_path, map_location=K.device) | |
except IOError: | |
# reconstruct 3d points in camera coordinates | |
xyz = backproj(K, depthmap, subsample) | |
# compute all distances | |
xyz = xyz.reshape(-1, 3) | |
graph = sim_func(xyz[:, None], xyz[None, :], gamma=gamma) | |
_, lora_proj = spectral_clustering(graph, k, normalized_cuts=normalized_cuts) | |
if cache_path: | |
torch.save(lora_proj.cpu(), mkdir_for(cache_path)) | |
lora_proj, coeffs = lora_encode_normed(lora_proj, depthmap.ravel(), min_norm=min_norm) | |
# depthmap ~= lora_proj @ coeffs | |
return coeffs, lora_proj | |
def lora_encode_normed(lora_proj, x, min_norm, global_norm=False): | |
# encode the pointmap | |
coeffs = torch.linalg.pinv(lora_proj) @ x | |
# rectify the norm of basis vector to be ~ equal | |
if coeffs.ndim == 1: | |
coeffs = coeffs[:, None] | |
if global_norm: | |
lora_proj *= coeffs[1:].norm() * min_norm / coeffs.shape[1] | |
elif min_norm: | |
lora_proj *= coeffs.norm(dim=1).clip(min=min_norm) | |
# can have rounding errors here! | |
coeffs = (torch.linalg.pinv(lora_proj.double()) @ x.double()).float() | |
return lora_proj.detach(), coeffs.detach() | |
def spectral_projection_of_depthmaps(imgs, intrinsics, depthmaps, subsample, cache_path=None, **kw): | |
# recover 3d points | |
core_depth = [] | |
lora_proj = [] | |
for i, img in enumerate(tqdm(imgs)): | |
cache = os.path.join(cache_path, 'lora_depth', hash_md5(img)) if cache_path else None | |
depth, proj = spectral_projection_depth(intrinsics[i], depthmaps[i], subsample, | |
cache_path=cache, **kw) | |
core_depth.append(depth) | |
lora_proj.append(proj) | |
return core_depth, lora_proj | |
def reproj2d(Trf, pts3d): | |
res = (pts3d @ Trf[:3, :3].transpose(-1, -2)) + Trf[:3, 3] | |
clipped_z = res[:, 2:3].clip(min=1e-3) # make sure we don't have nans! | |
uv = res[:, 0:2] / clipped_z | |
return uv.clip(min=-1000, max=2000) | |
def bfs(tree, start_node): | |
order, predecessors = sp.csgraph.breadth_first_order(tree, start_node, directed=False) | |
ranks = np.arange(len(order)) | |
ranks[order] = ranks.copy() | |
return ranks, predecessors | |
def compute_min_spanning_tree(pws): | |
sparse_graph = sp.dok_array(pws.shape) | |
for i, j in pws.nonzero().cpu().tolist(): | |
sparse_graph[i, j] = -float(pws[i, j]) | |
msp = sp.csgraph.minimum_spanning_tree(sparse_graph) | |
# now reorder the oriented edges, starting from the central point | |
ranks1, _ = bfs(msp, 0) | |
ranks2, _ = bfs(msp, ranks1.argmax()) | |
ranks1, _ = bfs(msp, ranks2.argmax()) | |
# this is the point farther from any leaf | |
root = np.minimum(ranks1, ranks2).argmax() | |
# find the ordered list of edges that describe the tree | |
order, predecessors = sp.csgraph.breadth_first_order(msp, root, directed=False) | |
order = order[1:] # root not do not have a predecessor | |
edges = [(predecessors[i], i) for i in order] | |
return root, edges | |
def show_reconstruction(shapes_or_imgs, K, cam2w, pts3d, gt_cam2w=None, gt_K=None, cam_size=None, masks=None, **kw): | |
viz = SceneViz() | |
cc = cam2w[:, :3, 3] | |
cs = cam_size or float(torch.cdist(cc, cc).fill_diagonal_(np.inf).min(dim=0).values.median()) | |
colors = 64 + np.random.randint(255 - 64, size=(len(cam2w), 3)) | |
if isinstance(shapes_or_imgs, np.ndarray) and shapes_or_imgs.ndim == 2: | |
cam_kws = dict(imsizes=shapes_or_imgs[:, ::-1], cam_size=cs) | |
else: | |
imgs = shapes_or_imgs | |
cam_kws = dict(images=imgs, cam_size=cs) | |
if K is not None: | |
viz.add_cameras(to_numpy(cam2w), to_numpy(K), colors=colors, **cam_kws) | |
if gt_cam2w is not None: | |
if gt_K is None: | |
gt_K = K | |
viz.add_cameras(to_numpy(gt_cam2w), to_numpy(gt_K), colors=colors, marker='o', **cam_kws) | |
if pts3d is not None: | |
for i, p in enumerate(pts3d): | |
if not len(p): | |
continue | |
if masks is None: | |
viz.add_pointcloud(to_numpy(p), color=tuple(colors[i].tolist())) | |
else: | |
viz.add_pointcloud(to_numpy(p), mask=masks[i], color=imgs[i]) | |
viz.show(**kw) | |