StableRecon / eval.py
Stable-X's picture
Upload folder using huggingface_hub
e4bf056 verified
import os
import time
import torch
import argparse
import numpy as np
import open3d as o3d
import os.path as osp
from dust3r.losses import L21
from spann3r.model import Spann3R
from dust3r.inference import inference
from dust3r.utils.geometry import geotrf
from dust3r.image_pairs import make_pairs
from spann3r.loss import Regr3D_t_ScaleShiftInv
from spann3r.datasets import *
from torch.utils.data import DataLoader
from spann3r.tools.eval_recon import accuracy, completion
def get_args_parser():
parser = argparse.ArgumentParser('Spann3R evaluation', add_help=False)
parser.add_argument('--exp_path', type=str, help='Path to experiment folder', default='./checkpoints')
parser.add_argument('--exp_name', type=str, default='ckpt_best', help='Path to experiment folder')
parser.add_argument('--ckpt', type=str, default='spann3r.pth', help='ckpt name')
parser.add_argument('--scenegraph_type', type=str, default='complete', help='scenegraph type')
parser.add_argument('--offline', action='store_true', help='offline reconstruction')
parser.add_argument('--device', type=str, default='cuda:0', help='device')
parser.add_argument('--conf_thresh', type=float, default=0.0, help='confidence threshold')
return parser
def main(args):
workspace = args.exp_path
ckpt_path = osp.join(workspace, args.ckpt)
if not osp.exists(workspace):
raise FileNotFoundError(f"Workspace {workspace} not found")
exp_path = osp.join(workspace, args.exp_name)
os.makedirs(exp_path, exist_ok=True)
datasets_all = {
'7scenes': SevenScenes(split='test', ROOT="./data/7scenes",
resolution=224, num_seq=1, full_video=True, kf_every=20),
'NRGBD': NRGBD(split='test', ROOT="./data/neural_rgbd",
resolution=224, num_seq=1, full_video=True, kf_every=40),
'DTU': DTU(split='test', ROOT="./data/dtu_test",
resolution=224, num_seq=1, full_video=True, kf_every=5),
}
model = Spann3R(dus3r_name='./checkpoints/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth',
use_feat=False).to(args.device)
model.load_state_dict(torch.load(ckpt_path)['model'])
model.eval()
criterion = Regr3D_t_ScaleShiftInv(L21, norm_mode=False, gt_scale=True)
with torch.no_grad():
for name_data, dataset in datasets_all.items():
save_path = osp.join(exp_path, name_data)
if args.offline:
save_path = osp.join(save_path + '_offline')
os.makedirs(save_path, exist_ok=True)
log_file = osp.join(save_path, 'logs.txt')
os.makedirs(save_path, exist_ok=True)
acc_all = 0
acc_all_med = 0
comp_all = 0
comp_all_med = 0
nc1_all = 0
nc1_all_med = 0
nc2_all = 0
nc2_all_med = 0
fps_all = []
time_all = []
dataloader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=0)
for i, batch in enumerate(dataloader):
for view in batch:
for name in 'img pts3d valid_mask camera_pose camera_intrinsics F_matrix corres'.split(): # pseudo_focal
if name not in view:
continue
view[name] = view[name].to(args.device, non_blocking=True)
print(f'Started reconstruction for {name_data} {i+1}/{len(dataloader)}')
if args.offline:
imgs_all = []
for j, view in enumerate(batch):
img = view['img']
shape1 = [img.size()[::-1]]
imgs_all.append(
dict(
img=img,
true_shape=torch.tensor(img.shape[2:]).unsqueeze(0),
idx=j,
instance=str(j)
)
)
start = time.time()
pairs = make_pairs(imgs_all, scene_graph=args.scenegraph_type, prefilter=None, symmetrize=True)
output = inference(pairs, model.dust3r, args.device, batch_size=2, verbose=True)
preds, preds_all, idx_used = model.offline_reconstruction(batch, output)
end = time.time()
ordered_batch = [batch[i] for i in idx_used]
else:
start = time.time()
preds, preds_all = model.forward(batch)
end = time.time()
ordered_batch = batch
fps = len(batch) / (end - start)
print(f'Finished reconstruction for {name_data} {i+1}/{len(dataloader)}, FPS: {fps:.2f}')
fps_all.append(fps)
time_all.append(end - start)
# Evaluation
print(f'Evaluation for {name_data} {i+1}/{len(dataloader)}')
gt_pts, pred_pts, gt_factor, pr_factor, masks, monitoring = criterion.get_all_pts3d_t(ordered_batch, preds_all)
pred_scale, gt_scale, pred_shift_z, gt_shift_z = monitoring['pred_scale'], monitoring['gt_scale'], monitoring['pred_shift_z'], monitoring['gt_shift_z']
in_camera1 = None
pts_all = []
pts_gt_all = []
images_all = []
masks_all = []
conf_all = []
for j, view in enumerate(ordered_batch):
if in_camera1 is None:
in_camera1 = view['camera_pose'][0].cpu()
image = view['img'].permute(0, 2, 3, 1).cpu().numpy()[0]
mask = view['valid_mask'].cpu().numpy()[0]
# pts = preds[j]['pts3d' if j==0 else 'pts3d_in_other_view'].detach().cpu().numpy()[0]
pts = pred_pts[0][j].cpu().numpy()[0] if j < len(pred_pts[0]) else pred_pts[1][-1].cpu().numpy()[0]
conf = preds[j]['conf'][0].cpu().data.numpy()
pts_gt = gt_pts[j].detach().cpu().numpy()[0]
#### Align predicted 3D points to the ground truth
pts[..., -1] += gt_shift_z.cpu().numpy().item()
pts = geotrf(in_camera1, pts)
pts_gt[..., -1] += gt_shift_z.cpu().numpy().item()
pts_gt = geotrf(in_camera1, pts_gt)
images_all.append((image[None, ...] + 1.0)/2.0)
pts_all.append(pts[None, ...])
pts_gt_all.append(pts_gt[None, ...])
masks_all.append(mask[None, ...])
conf_all.append(conf[None, ...])
images_all = np.concatenate(images_all, axis=0)
pts_all = np.concatenate(pts_all, axis=0)
pts_gt_all = np.concatenate(pts_gt_all, axis=0)
masks_all = np.concatenate(masks_all, axis=0)
conf_all = np.concatenate(conf_all, axis=0)
scene_id = view['label'][0].rsplit('/', 1)[0]
save_params = {}
save_params['images_all'] = images_all
save_params['pts_all'] = pts_all
save_params['pts_gt_all'] = pts_gt_all
save_params['masks_all'] = masks_all
save_params['conf_all'] = conf_all
np.save(os.path.join(save_path, f"{scene_id.replace('/', '_')}.npy"), save_params)
if 'DTU' in name_data:
threshold = 100
else:
threshold = 0.1
pts_all_masked = pts_all[masks_all > 0]
pts_gt_all_masked = pts_gt_all[masks_all > 0]
images_all_masked = images_all[masks_all > 0]
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(pts_all_masked.reshape(-1, 3))
pcd.colors = o3d.utility.Vector3dVector(images_all_masked.reshape(-1, 3))
o3d.io.write_point_cloud(os.path.join(save_path, f"{scene_id.replace('/', '_')}-mask.ply"), pcd)
pcd_gt = o3d.geometry.PointCloud()
pcd_gt.points = o3d.utility.Vector3dVector(pts_gt_all_masked.reshape(-1, 3))
pcd_gt.colors = o3d.utility.Vector3dVector(images_all_masked.reshape(-1, 3) / 255.0)
o3d.io.write_point_cloud(os.path.join(save_path, f"{scene_id.replace('/', '_')}-gt.ply"), pcd_gt)
trans_init = np.eye(4)
reg_p2p = o3d.pipelines.registration.registration_icp(
pcd, pcd_gt, threshold, trans_init,
o3d.pipelines.registration.TransformationEstimationPointToPoint())
transformation = reg_p2p.transformation
pcd = pcd.transform(transformation)
pcd.estimate_normals()
pcd_gt.estimate_normals()
gt_normal = np.asarray(pcd_gt.normals)
pred_normal = np.asarray(pcd.normals)
acc, acc_med, nc1, nc1_med = accuracy(pcd_gt.points, pcd.points, gt_normal, pred_normal)
comp, comp_med, nc2, nc2_med = completion(pcd_gt.points, pcd.points, gt_normal, pred_normal)
print(f"Idx: {scene_id}, Acc: {acc}, Comp: {comp}, NC1: {nc1}, NC2: {nc2} - Acc_med: {acc_med}, Compc_med: {comp_med}, NC1c_med: {nc1_med}, NC2c_med: {nc2_med}", file=open(log_file, "a"))
acc_all += acc
comp_all += comp
nc1_all += nc1
nc2_all += nc2
acc_all_med += acc_med
comp_all_med += comp_med
nc1_all_med += nc1_med
nc2_all_med += nc2_med
# release cuda memory
torch.cuda.empty_cache()
print(f"Finished evaluation for {name_data} {i+1}/{len(dataloader)}")
# Get depth from pcd and run TSDFusion
print(f"Dataset: {name_data}, Accuracy: {acc_all/len(dataloader)}, Completion: {comp_all/len(dataloader)}, NC1: {nc1_all/len(dataloader)}, NC2: {nc2_all/len(dataloader)} - Acc_med: {acc_all_med/len(dataloader)}, Comp_med: {comp_all_med/len(dataloader)}, NC1_med: {nc1_all_med/len(dataloader)}, NC2_med: {nc2_all_med/len(dataloader)}", file=open(log_file, "a"))
print(f"Average fps: {sum(fps) / len(fps)}, Average time: {sum(time_all) / len(time_all)}", file=open(log_file, "a"))
if __name__ == '__main__':
parser = get_args_parser()
args = parser.parse_args()
main(args)