Spaces:
Sleeping
Sleeping
import os | |
import os.path as osp | |
import json | |
import itertools | |
from collections import deque | |
import cv2 | |
import numpy as np | |
from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset | |
from dust3r.utils.image import imread_cv2 | |
class habitat(BaseStereoViewDataset): | |
def __init__(self, num_seq=200, num_frames=5, *args, ROOT, **kwargs): | |
self.ROOT = ROOT | |
super().__init__(*args, **kwargs) | |
self.num_seq = num_seq | |
self.num_frames = num_frames | |
# load all scenes | |
self.load_all_scenes(ROOT, num_seq) | |
def __len__(self): | |
return len(self.scenes) * self.num_seq | |
def load_all_scenes(self, base_dir, num_seq=200): | |
self.scenes = {} | |
data_all = os.listdir(base_dir) | |
print('All datasets in Habitat:', data_all) | |
for data in data_all: | |
scenes = os.listdir(osp.join(base_dir, data)) | |
self.scenes[data] = scenes | |
self.scenes = {(k, v2): list(range(num_seq)) for k, v in self.scenes.items() | |
for v2 in v} | |
self.scene_list = list(self.scenes.keys()) | |
def _get_views(self, idx, resolution, rng): | |
data, scene = self.scene_list[idx // self.num_seq] | |
seq_id = idx % self.num_seq | |
views = [] | |
imgs_idxs = deque(range(1, self.num_frames+1)) | |
# TODO: add a bit of randomness of the order | |
while len(imgs_idxs) > 0: | |
im_idx = imgs_idxs.pop() | |
impath = osp.join(self.ROOT, data, scene, f"{seq_id:08}_{im_idx}.jpeg") | |
depthpath = osp.join(self.ROOT, data, scene, f"{seq_id:08}_{im_idx}_depth.exr") | |
cam_params_path = osp.join(self.ROOT, data, scene, f"{seq_id:08}_{im_idx}_camera_params.json") | |
rgb_image = imread_cv2(impath) | |
depthmap = imread_cv2(depthpath, cv2.IMREAD_UNCHANGED) | |
# check nan in depth, throw a warning | |
if np.isnan(depthmap).any(): | |
print(f'Warning: NaN in depthmap: {depthpath}, converting to 0.0') | |
depthmap = np.nan_to_num(depthmap.astype(np.float32), 0.0) | |
cam_params = json.load(open(cam_params_path, 'r')) | |
intrinsics = np.array(cam_params['camera_intrinsics']) | |
# cam_r: [3, 3], cam_t: [3, ] | |
cam_r = np.array(cam_params['R_cam2world'], dtype=np.float32) | |
cam_t = np.array(cam_params['t_cam2world'], dtype=np.float32) | |
# camera_pose: [4, 4] | |
camera_pose = np.eye(4) | |
camera_pose[:3, :3] = cam_r | |
camera_pose[:3, 3] = cam_t | |
rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary( | |
rgb_image, depthmap, intrinsics, resolution, rng=rng, info=impath) | |
num_valid = (depthmap > 0.0).sum() | |
if num_valid == 0: | |
continue | |
views.append(dict( | |
img=rgb_image, | |
depthmap=depthmap, | |
camera_pose=camera_pose, | |
camera_intrinsics=intrinsics, | |
dataset='habitat', | |
label=osp.join(data, scene), | |
instance=osp.split(impath)[1], | |
)) | |
return views | |
if __name__ == '__main__': | |
dataset = habitat(split='train', ROOT="/home/hengyi/nopemap/data/pair_5_subset", resolution=224) | |
views = dataset._get_views(0, [256, 256], np.random.RandomState(0)) | |
print(views[0]['instance']) | |