Stable-X's picture
Upload folder using huggingface_hub
e4bf056 verified
raw
history blame
6.46 kB
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Dataloader for preprocessed Co3d_v2
# dataset at https://github.com/facebookresearch/co3d - Creative Commons Attribution-NonCommercial 4.0 International
# See datasets_preprocess/preprocess_co3d.py
# --------------------------------------------------------
import os.path as osp
import json
import itertools
from collections import deque
import cv2
import numpy as np
from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset
from dust3r.utils.image import imread_cv2
class Co3d(BaseStereoViewDataset):
def __init__(self, mask_bg=True, *args, ROOT, **kwargs):
self.ROOT = ROOT
super().__init__(*args, **kwargs)
assert mask_bg in (True, False, 'rand')
self.mask_bg = mask_bg
# load all scenes
with open(osp.join(self.ROOT, f'selected_seqs_{self.split}.json'), 'r') as f:
self.scenes = json.load(f)
self.scenes = {k: v for k, v in self.scenes.items() if len(v) > 0} # k is class (apple), v is corresponding list
self.scenes = {(k, k2): v2 for k, v in self.scenes.items()
for k2, v2 in v.items()} # k is class (apple), k2 is instance (110_13051_23361), v2 is list of image idx
self.scene_list = list(self.scenes.keys())
# for each scene, we have 100 images ==> 360 degrees (so 25 frames ~= 90 degrees)
# we prepare all combinations such that i-j = +/- [5, 10, .., 90] degrees
self.combinations = [(i, j)
for i, j in itertools.combinations(range(100), 2)
if 0 < abs(i-j) <= 30 and abs(i-j) % 5 == 0] # weird choice
self.invalidate = {scene: {} for scene in self.scene_list}
def __len__(self):
return len(self.scene_list) * len(self.combinations)
def _get_views(self, idx, resolution, rng):
# choose a scene
obj, instance = self.scene_list[idx // len(self.combinations)]
image_pool = self.scenes[obj, instance]
# Get image index
im1_idx, im2_idx = self.combinations[idx % len(self.combinations)]
# add a bit of randomness
last = len(image_pool)-1
if resolution not in self.invalidate[obj, instance]: # flag invalid images
self.invalidate[obj, instance][resolution] = [False for _ in range(len(image_pool))]
# decide now if we mask the bg
mask_bg = (self.mask_bg == True) or (self.mask_bg == 'rand' and rng.choice(2))
views = []
imgs_idxs = [max(0, min(im_idx + rng.integers(-4, 5), last)) for im_idx in [im2_idx, im1_idx]]
imgs_idxs = deque(imgs_idxs)
while len(imgs_idxs) > 0: # some images (few) have zero depth
im_idx = imgs_idxs.pop()
if self.invalidate[obj, instance][resolution][im_idx]:
# search for a valid image
random_direction = 2 * rng.choice(2) - 1
for offset in range(1, len(image_pool)):
tentative_im_idx = (im_idx + (random_direction * offset)) % len(image_pool)
if not self.invalidate[obj, instance][resolution][tentative_im_idx]:
im_idx = tentative_im_idx
break
view_idx = image_pool[im_idx]
impath = osp.join(self.ROOT, obj, instance, 'images', f'frame{view_idx:06n}.jpg')
# load camera params
input_metadata = np.load(impath.replace('jpg', 'npz'))
camera_pose = input_metadata['camera_pose'].astype(np.float32)
intrinsics = input_metadata['camera_intrinsics'].astype(np.float32)
# load image and depth
rgb_image = imread_cv2(impath)
depthmap = imread_cv2(impath.replace('images', 'depths') + '.geometric.png', cv2.IMREAD_UNCHANGED)
depthmap = (depthmap.astype(np.float32) / 65535) * np.nan_to_num(input_metadata['maximum_depth'])
if mask_bg:
# load object mask
maskpath = osp.join(self.ROOT, obj, instance, 'masks', f'frame{view_idx:06n}.png')
maskmap = imread_cv2(maskpath, cv2.IMREAD_UNCHANGED).astype(np.float32)
maskmap = (maskmap / 255.0) > 0.1
# update the depthmap with mask
depthmap *= maskmap
rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary(
rgb_image, depthmap, intrinsics, resolution, rng=rng, info=impath)
num_valid = (depthmap > 0.0).sum()
if num_valid == 0:
# problem, invalidate image and retry
self.invalidate[obj, instance][resolution][im_idx] = True
imgs_idxs.append(im_idx)
continue
views.append(dict(
img=rgb_image,
depthmap=depthmap,
camera_pose=camera_pose,
camera_intrinsics=intrinsics,
dataset='Co3d_v2',
label=osp.join(obj, instance),
instance=osp.split(impath)[1],
))
return views
if __name__ == "__main__":
from dust3r.datasets.base.base_stereo_view_dataset import view_name
from dust3r.viz import SceneViz, auto_cam_size
from dust3r.utils.image import rgb
dataset = Co3d(split='train', ROOT="data/co3d_subset_processed", resolution=224, aug_crop=16)
for idx in np.random.permutation(len(dataset)):
views = dataset[idx]
assert len(views) == 2
print(view_name(views[0]), view_name(views[1]))
viz = SceneViz()
poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]]
cam_size = max(auto_cam_size(poses), 0.001)
for view_idx in [0, 1]:
pts3d = views[view_idx]['pts3d']
valid_mask = views[view_idx]['valid_mask']
colors = rgb(views[view_idx]['img'])
viz.add_pointcloud(pts3d, colors, valid_mask)
viz.add_camera(pose_c2w=views[view_idx]['camera_pose'],
focal=views[view_idx]['camera_intrinsics'][0, 0],
color=(idx*255, (1 - idx)*255, 0),
image=colors,
cam_size=cam_size)
viz.show()