Spaces:
Running
on
Zero
Running
on
Zero
Stable-X
commited on
Commit
·
508279d
1
Parent(s):
c0e046b
Update code
Browse files- README.md +11 -9
- app.py +413 -0
- requirements.txt +132 -0
- requirements_min.txt +17 -0
- stablediffuse/__init__.py +0 -0
- stablediffuse/__pycache__/__init__.cpython-39.pyc +0 -0
- stablediffuse/__pycache__/pipeline_yoso_diffuse.cpython-39.pyc +0 -0
- stablediffuse/pipeline_yoso_diffuse.py +724 -0
README.md
CHANGED
@@ -1,13 +1,15 @@
|
|
1 |
---
|
2 |
-
title: StableDiffuse
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
10 |
-
license:
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: StableDiffuse: Removing Reflections from Textured Surfaces in a Single Image
|
3 |
+
emoji: 🏵️
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: red
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.32.2
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
+
license: cc-by-sa-4.0
|
11 |
+
models:
|
12 |
+
- Stable-X/yoso-diffuse-v0-2
|
13 |
+
hf_oauth: true
|
14 |
+
hf_oauth_expiration_minutes: 43200
|
15 |
---
|
|
|
|
app.py
ADDED
@@ -0,0 +1,413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Anton Obukhov, ETH Zurich. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# --------------------------------------------------------------------------
|
15 |
+
# If you find this code useful, we kindly ask you to cite our paper in your work.
|
16 |
+
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
|
17 |
+
# More information about the method can be found at https://marigoldmonodepth.github.io
|
18 |
+
# --------------------------------------------------------------------------
|
19 |
+
from __future__ import annotations
|
20 |
+
|
21 |
+
import functools
|
22 |
+
import os
|
23 |
+
import tempfile
|
24 |
+
|
25 |
+
import diffusers
|
26 |
+
import gradio as gr
|
27 |
+
import imageio as imageio
|
28 |
+
import numpy as np
|
29 |
+
import spaces
|
30 |
+
import torch as torch
|
31 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
32 |
+
from PIL import Image
|
33 |
+
from gradio_imageslider import ImageSlider
|
34 |
+
from tqdm import tqdm
|
35 |
+
|
36 |
+
from pathlib import Path
|
37 |
+
import gradio
|
38 |
+
from gradio.utils import get_cache_folder
|
39 |
+
from stablediffuse.pipeline_yoso_diffuse import YOSODiffusePipeline
|
40 |
+
|
41 |
+
class Examples(gradio.helpers.Examples):
|
42 |
+
def __init__(self, *args, directory_name=None, **kwargs):
|
43 |
+
super().__init__(*args, **kwargs, _initiated_directly=False)
|
44 |
+
if directory_name is not None:
|
45 |
+
self.cached_folder = get_cache_folder() / directory_name
|
46 |
+
self.cached_file = Path(self.cached_folder) / "log.csv"
|
47 |
+
self.create()
|
48 |
+
|
49 |
+
|
50 |
+
default_seed = 2024
|
51 |
+
default_batch_size = 1
|
52 |
+
|
53 |
+
default_image_processing_resolution = 768
|
54 |
+
|
55 |
+
default_video_num_inference_steps = 10
|
56 |
+
default_video_processing_resolution = 768
|
57 |
+
default_video_out_max_frames = 60
|
58 |
+
|
59 |
+
def process_image_check(path_input):
|
60 |
+
if path_input is None:
|
61 |
+
raise gr.Error(
|
62 |
+
"Missing image in the first pane: upload a file or use one from the gallery below."
|
63 |
+
)
|
64 |
+
|
65 |
+
def resize_image(input_image, resolution):
|
66 |
+
# Ensure input_image is a PIL Image object
|
67 |
+
if not isinstance(input_image, Image.Image):
|
68 |
+
raise ValueError("input_image should be a PIL Image object")
|
69 |
+
|
70 |
+
# Convert image to numpy array
|
71 |
+
input_image_np = np.asarray(input_image)
|
72 |
+
|
73 |
+
# Get image dimensions
|
74 |
+
H, W, C = input_image_np.shape
|
75 |
+
H = float(H)
|
76 |
+
W = float(W)
|
77 |
+
|
78 |
+
# Calculate the scaling factor
|
79 |
+
k = float(resolution) / min(H, W)
|
80 |
+
|
81 |
+
# Determine new dimensions
|
82 |
+
H *= k
|
83 |
+
W *= k
|
84 |
+
H = int(np.round(H / 64.0)) * 64
|
85 |
+
W = int(np.round(W / 64.0)) * 64
|
86 |
+
|
87 |
+
# Resize the image using PIL's resize method
|
88 |
+
img = input_image.resize((W, H), Image.Resampling.LANCZOS)
|
89 |
+
|
90 |
+
return img
|
91 |
+
|
92 |
+
def process_image(
|
93 |
+
pipe,
|
94 |
+
path_input,
|
95 |
+
):
|
96 |
+
name_base, name_ext = os.path.splitext(os.path.basename(path_input))
|
97 |
+
print(f"Processing image {name_base}{name_ext}")
|
98 |
+
|
99 |
+
path_output_dir = tempfile.mkdtemp()
|
100 |
+
path_out_png = os.path.join(path_output_dir, f"{name_base}_diffuse.png")
|
101 |
+
input_image = Image.open(path_input)
|
102 |
+
input_image = resize_image(input_image, default_image_processing_resolution)
|
103 |
+
|
104 |
+
pipe_out = pipe(
|
105 |
+
input_image,
|
106 |
+
match_input_resolution=False,
|
107 |
+
processing_resolution=max(input_image.size)
|
108 |
+
)
|
109 |
+
|
110 |
+
processed_frame = (pipe_out.prediction.clip(-1, 1) + 1) / 2
|
111 |
+
processed_frame = (processed_frame[0] * 255).astype(np.uint8)
|
112 |
+
processed_frame = Image.fromarray(processed_frame)
|
113 |
+
processed_frame.save(path_out_png)
|
114 |
+
yield [input_image, path_out_png]
|
115 |
+
|
116 |
+
def center_crop(img):
|
117 |
+
# Open the image file
|
118 |
+
img_width, img_height = img.size
|
119 |
+
crop_width =min(img_width, img_height)
|
120 |
+
# Calculate the cropping box
|
121 |
+
left = (img_width - crop_width) / 2
|
122 |
+
top = (img_height - crop_width) / 2
|
123 |
+
right = (img_width + crop_width) / 2
|
124 |
+
bottom = (img_height + crop_width) / 2
|
125 |
+
|
126 |
+
# Crop the image
|
127 |
+
img_cropped = img.crop((left, top, right, bottom))
|
128 |
+
return img_cropped
|
129 |
+
|
130 |
+
def process_video(
|
131 |
+
pipe,
|
132 |
+
path_input,
|
133 |
+
out_max_frames=default_video_out_max_frames,
|
134 |
+
target_fps=10,
|
135 |
+
progress=gr.Progress(),
|
136 |
+
):
|
137 |
+
if path_input is None:
|
138 |
+
raise gr.Error(
|
139 |
+
"Missing video in the first pane: upload a file or use one from the gallery below."
|
140 |
+
)
|
141 |
+
|
142 |
+
name_base, name_ext = os.path.splitext(os.path.basename(path_input))
|
143 |
+
print(f"Processing video {name_base}{name_ext}")
|
144 |
+
|
145 |
+
path_output_dir = tempfile.mkdtemp()
|
146 |
+
path_out_vis = os.path.join(path_output_dir, f"{name_base}_diffuse_colored.mp4")
|
147 |
+
|
148 |
+
init_latents = None
|
149 |
+
reader, writer = None, None
|
150 |
+
try:
|
151 |
+
reader = imageio.get_reader(path_input)
|
152 |
+
|
153 |
+
meta_data = reader.get_meta_data()
|
154 |
+
fps = meta_data["fps"]
|
155 |
+
size = meta_data["size"]
|
156 |
+
duration_sec = meta_data["duration"]
|
157 |
+
|
158 |
+
writer = imageio.get_writer(path_out_vis, fps=target_fps)
|
159 |
+
|
160 |
+
out_frame_id = 0
|
161 |
+
pbar = tqdm(desc="Processing Video", total=duration_sec)
|
162 |
+
|
163 |
+
for frame_id, frame in enumerate(reader):
|
164 |
+
if frame_id % (fps // target_fps) != 0:
|
165 |
+
continue
|
166 |
+
else:
|
167 |
+
out_frame_id += 1
|
168 |
+
pbar.update(1)
|
169 |
+
if out_frame_id > out_max_frames:
|
170 |
+
break
|
171 |
+
|
172 |
+
frame_pil = Image.fromarray(frame)
|
173 |
+
# frame_pil = center_crop(frame_pil)
|
174 |
+
pipe_out = pipe(
|
175 |
+
frame_pil,
|
176 |
+
match_input_resolution=False,
|
177 |
+
latents=init_latents
|
178 |
+
)
|
179 |
+
|
180 |
+
if init_latents is None:
|
181 |
+
init_latents = pipe_out.gaus_noise
|
182 |
+
processed_frame = (pipe_out.prediction.clip(-1, 1) + 1) / 2
|
183 |
+
processed_frame = processed_frame[0]
|
184 |
+
_processed_frame = imageio.core.util.Array(processed_frame)
|
185 |
+
writer.append_data(_processed_frame)
|
186 |
+
|
187 |
+
yield (
|
188 |
+
[frame_pil, processed_frame],
|
189 |
+
None,
|
190 |
+
)
|
191 |
+
finally:
|
192 |
+
|
193 |
+
if writer is not None:
|
194 |
+
writer.close()
|
195 |
+
|
196 |
+
if reader is not None:
|
197 |
+
reader.close()
|
198 |
+
|
199 |
+
yield (
|
200 |
+
[frame_pil, processed_frame],
|
201 |
+
[path_out_vis,]
|
202 |
+
)
|
203 |
+
|
204 |
+
|
205 |
+
def run_demo_server(pipe):
|
206 |
+
process_pipe_image = spaces.GPU(functools.partial(process_image, pipe))
|
207 |
+
process_pipe_video = spaces.GPU(
|
208 |
+
functools.partial(process_video, pipe), duration=120
|
209 |
+
)
|
210 |
+
|
211 |
+
gradio_theme = gr.themes.Default()
|
212 |
+
|
213 |
+
with gr.Blocks(
|
214 |
+
theme=gradio_theme,
|
215 |
+
title="Stable Diffuse Estimation",
|
216 |
+
css="""
|
217 |
+
#download {
|
218 |
+
height: 118px;
|
219 |
+
}
|
220 |
+
.slider .inner {
|
221 |
+
width: 5px;
|
222 |
+
background: #FFF;
|
223 |
+
}
|
224 |
+
.viewport {
|
225 |
+
aspect-ratio: 4/3;
|
226 |
+
}
|
227 |
+
.tabs button.selected {
|
228 |
+
font-size: 20px !important;
|
229 |
+
color: crimson !important;
|
230 |
+
}
|
231 |
+
h1 {
|
232 |
+
text-align: center;
|
233 |
+
display: block;
|
234 |
+
}
|
235 |
+
h2 {
|
236 |
+
text-align: center;
|
237 |
+
display: block;
|
238 |
+
}
|
239 |
+
h3 {
|
240 |
+
text-align: center;
|
241 |
+
display: block;
|
242 |
+
}
|
243 |
+
.md_feedback li {
|
244 |
+
margin-bottom: 0px !important;
|
245 |
+
}
|
246 |
+
""",
|
247 |
+
head="""
|
248 |
+
<script async src="https://www.googletagmanager.com/gtag/js?id=G-1FWSVCGZTG"></script>
|
249 |
+
<script>
|
250 |
+
window.dataLayer = window.dataLayer || [];
|
251 |
+
function gtag() {dataLayer.push(arguments);}
|
252 |
+
gtag('js', new Date());
|
253 |
+
gtag('config', 'G-1FWSVCGZTG');
|
254 |
+
</script>
|
255 |
+
""",
|
256 |
+
) as demo:
|
257 |
+
gr.Markdown(
|
258 |
+
"""
|
259 |
+
# StableDiffuse: Removing Reflections from Textured Surfaces in a Single Image
|
260 |
+
<p align="center">
|
261 |
+
"""
|
262 |
+
)
|
263 |
+
|
264 |
+
with gr.Tabs(elem_classes=["tabs"]):
|
265 |
+
with gr.Tab("Image"):
|
266 |
+
with gr.Row():
|
267 |
+
with gr.Column():
|
268 |
+
image_input = gr.Image(
|
269 |
+
label="Input Image",
|
270 |
+
type="filepath",
|
271 |
+
)
|
272 |
+
with gr.Row():
|
273 |
+
image_submit_btn = gr.Button(
|
274 |
+
value="Compute Diffuse", variant="primary"
|
275 |
+
)
|
276 |
+
image_reset_btn = gr.Button(value="Reset")
|
277 |
+
with gr.Column():
|
278 |
+
image_output_slider = ImageSlider(
|
279 |
+
label="Diffuse outputs",
|
280 |
+
type="filepath",
|
281 |
+
show_download_button=True,
|
282 |
+
show_share_button=True,
|
283 |
+
interactive=False,
|
284 |
+
elem_classes="slider",
|
285 |
+
position=0.25,
|
286 |
+
)
|
287 |
+
|
288 |
+
Examples(
|
289 |
+
fn=process_pipe_image,
|
290 |
+
examples=sorted([
|
291 |
+
os.path.join("files", "image", name)
|
292 |
+
for name in os.listdir(os.path.join("files", "image"))
|
293 |
+
]),
|
294 |
+
inputs=[image_input],
|
295 |
+
outputs=[image_output_slider],
|
296 |
+
cache_examples=False,
|
297 |
+
directory_name="examples_image",
|
298 |
+
)
|
299 |
+
|
300 |
+
with gr.Tab("Video"):
|
301 |
+
with gr.Row():
|
302 |
+
with gr.Column():
|
303 |
+
video_input = gr.Video(
|
304 |
+
label="Input Video",
|
305 |
+
sources=["upload", "webcam"],
|
306 |
+
)
|
307 |
+
with gr.Row():
|
308 |
+
video_submit_btn = gr.Button(
|
309 |
+
value="Compute Diffuse", variant="primary"
|
310 |
+
)
|
311 |
+
video_reset_btn = gr.Button(value="Reset")
|
312 |
+
with gr.Column():
|
313 |
+
processed_frames = ImageSlider(
|
314 |
+
label="Realtime Visualization",
|
315 |
+
type="filepath",
|
316 |
+
show_download_button=True,
|
317 |
+
show_share_button=True,
|
318 |
+
interactive=False,
|
319 |
+
elem_classes="slider",
|
320 |
+
position=0.25,
|
321 |
+
)
|
322 |
+
video_output_files = gr.Files(
|
323 |
+
label="Diffuse outputs",
|
324 |
+
elem_id="download",
|
325 |
+
interactive=False,
|
326 |
+
)
|
327 |
+
Examples(
|
328 |
+
fn=process_pipe_video,
|
329 |
+
examples=sorted([
|
330 |
+
os.path.join("files", "video", name)
|
331 |
+
for name in os.listdir(os.path.join("files", "video"))
|
332 |
+
]),
|
333 |
+
inputs=[video_input],
|
334 |
+
outputs=[processed_frames, video_output_files],
|
335 |
+
directory_name="examples_video",
|
336 |
+
cache_examples=False,
|
337 |
+
)
|
338 |
+
|
339 |
+
### Image tab
|
340 |
+
image_submit_btn.click(
|
341 |
+
fn=process_image_check,
|
342 |
+
inputs=image_input,
|
343 |
+
outputs=None,
|
344 |
+
preprocess=False,
|
345 |
+
queue=False,
|
346 |
+
).success(
|
347 |
+
fn=process_pipe_image,
|
348 |
+
inputs=[
|
349 |
+
image_input,
|
350 |
+
],
|
351 |
+
outputs=[image_output_slider],
|
352 |
+
concurrency_limit=1,
|
353 |
+
)
|
354 |
+
|
355 |
+
image_reset_btn.click(
|
356 |
+
fn=lambda: (
|
357 |
+
None,
|
358 |
+
None,
|
359 |
+
None,
|
360 |
+
),
|
361 |
+
inputs=[],
|
362 |
+
outputs=[
|
363 |
+
image_input,
|
364 |
+
image_output_slider,
|
365 |
+
],
|
366 |
+
queue=False,
|
367 |
+
)
|
368 |
+
|
369 |
+
### Video tab
|
370 |
+
|
371 |
+
video_submit_btn.click(
|
372 |
+
fn=process_pipe_video,
|
373 |
+
inputs=[video_input],
|
374 |
+
outputs=[processed_frames, video_output_files],
|
375 |
+
concurrency_limit=1,
|
376 |
+
)
|
377 |
+
|
378 |
+
video_reset_btn.click(
|
379 |
+
fn=lambda: (None, None, None),
|
380 |
+
inputs=[],
|
381 |
+
outputs=[video_input, processed_frames, video_output_files],
|
382 |
+
concurrency_limit=1,
|
383 |
+
)
|
384 |
+
|
385 |
+
### Server launch
|
386 |
+
|
387 |
+
demo.queue(
|
388 |
+
api_open=False,
|
389 |
+
).launch(
|
390 |
+
server_name="0.0.0.0",
|
391 |
+
server_port=7860,
|
392 |
+
)
|
393 |
+
|
394 |
+
|
395 |
+
def main():
|
396 |
+
os.system("pip freeze")
|
397 |
+
|
398 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
399 |
+
|
400 |
+
pipe = YOSODiffusePipeline.from_pretrained(
|
401 |
+
'weights/yoso-diffuse-v0-2', trust_remote_code=True, variant="fp16",
|
402 |
+
torch_dtype=torch.float16, t_start=0).to(device)
|
403 |
+
try:
|
404 |
+
import xformers
|
405 |
+
pipe.enable_xformers_memory_efficient_attention()
|
406 |
+
except:
|
407 |
+
pass # run without xformers
|
408 |
+
|
409 |
+
run_demo_server(pipe)
|
410 |
+
|
411 |
+
|
412 |
+
if __name__ == "__main__":
|
413 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==0.30.1
|
2 |
+
aiofiles==23.2.1
|
3 |
+
aiohttp==3.9.5
|
4 |
+
aiosignal==1.3.1
|
5 |
+
altair==5.3.0
|
6 |
+
annotated-types==0.7.0
|
7 |
+
anyio==4.4.0
|
8 |
+
async-timeout==4.0.3
|
9 |
+
attrs==23.2.0
|
10 |
+
Authlib==1.3.0
|
11 |
+
certifi==2024.2.2
|
12 |
+
cffi==1.16.0
|
13 |
+
charset-normalizer==3.3.2
|
14 |
+
click==8.0.4
|
15 |
+
contourpy==1.2.1
|
16 |
+
cryptography==42.0.7
|
17 |
+
cycler==0.12.1
|
18 |
+
dataclasses-json==0.6.6
|
19 |
+
datasets==2.19.1
|
20 |
+
Deprecated==1.2.14
|
21 |
+
diffusers==0.28.0
|
22 |
+
dill==0.3.8
|
23 |
+
dnspython==2.6.1
|
24 |
+
email_validator==2.1.1
|
25 |
+
exceptiongroup==1.2.1
|
26 |
+
fastapi==0.111.0
|
27 |
+
fastapi-cli==0.0.4
|
28 |
+
ffmpy==0.3.2
|
29 |
+
filelock==3.14.0
|
30 |
+
fonttools==4.53.0
|
31 |
+
frozenlist==1.4.1
|
32 |
+
fsspec==2024.3.1
|
33 |
+
gradio==4.32.2
|
34 |
+
gradio_client==0.17.0
|
35 |
+
gradio_imageslider==0.0.20
|
36 |
+
h11==0.14.0
|
37 |
+
httpcore==1.0.5
|
38 |
+
httptools==0.6.1
|
39 |
+
httpx==0.27.0
|
40 |
+
huggingface-hub==0.23.0
|
41 |
+
idna==3.7
|
42 |
+
imageio==2.34.1
|
43 |
+
imageio-ffmpeg==0.5.0
|
44 |
+
importlib_metadata==7.1.0
|
45 |
+
importlib_resources==6.4.0
|
46 |
+
itsdangerous==2.2.0
|
47 |
+
Jinja2==3.1.4
|
48 |
+
jsonschema==4.22.0
|
49 |
+
jsonschema-specifications==2023.12.1
|
50 |
+
kiwisolver==1.4.5
|
51 |
+
markdown-it-py==3.0.0
|
52 |
+
MarkupSafe==2.1.5
|
53 |
+
marshmallow==3.21.2
|
54 |
+
matplotlib==3.8.2
|
55 |
+
mdurl==0.1.2
|
56 |
+
mpmath==1.3.0
|
57 |
+
multidict==6.0.5
|
58 |
+
multiprocess==0.70.16
|
59 |
+
mypy-extensions==1.0.0
|
60 |
+
networkx==3.3
|
61 |
+
numpy==1.26.4
|
62 |
+
nvidia-cublas-cu12==12.1.3.1
|
63 |
+
nvidia-cuda-cupti-cu12==12.1.105
|
64 |
+
nvidia-cuda-nvrtc-cu12==12.1.105
|
65 |
+
nvidia-cuda-runtime-cu12==12.1.105
|
66 |
+
nvidia-cudnn-cu12==8.9.2.26
|
67 |
+
nvidia-cufft-cu12==11.0.2.54
|
68 |
+
nvidia-curand-cu12==10.3.2.106
|
69 |
+
nvidia-cusolver-cu12==11.4.5.107
|
70 |
+
nvidia-cusparse-cu12==12.1.0.106
|
71 |
+
nvidia-nccl-cu12==2.19.3
|
72 |
+
nvidia-nvjitlink-cu12==12.5.40
|
73 |
+
nvidia-nvtx-cu12==12.1.105
|
74 |
+
orjson==3.10.3
|
75 |
+
packaging==24.0
|
76 |
+
pandas==2.2.2
|
77 |
+
pillow==10.3.0
|
78 |
+
protobuf==3.20.3
|
79 |
+
psutil==5.9.8
|
80 |
+
pyarrow==16.0.0
|
81 |
+
pyarrow-hotfix==0.6
|
82 |
+
pycparser==2.22
|
83 |
+
pydantic==2.7.2
|
84 |
+
pydantic_core==2.18.3
|
85 |
+
pydub==0.25.1
|
86 |
+
pygltflib==1.16.1
|
87 |
+
Pygments==2.18.0
|
88 |
+
pyparsing==3.1.2
|
89 |
+
python-dateutil==2.9.0.post0
|
90 |
+
python-dotenv==1.0.1
|
91 |
+
python-multipart==0.0.9
|
92 |
+
pytz==2024.1
|
93 |
+
PyYAML==6.0.1
|
94 |
+
referencing==0.35.1
|
95 |
+
regex==2024.5.15
|
96 |
+
requests==2.31.0
|
97 |
+
rich==13.7.1
|
98 |
+
rpds-py==0.18.1
|
99 |
+
ruff==0.4.7
|
100 |
+
safetensors==0.4.3
|
101 |
+
scipy==1.11.4
|
102 |
+
semantic-version==2.10.0
|
103 |
+
shellingham==1.5.4
|
104 |
+
six==1.16.0
|
105 |
+
sniffio==1.3.1
|
106 |
+
spaces==0.28.3
|
107 |
+
starlette==0.37.2
|
108 |
+
sympy==1.12.1
|
109 |
+
tokenizers==0.15.2
|
110 |
+
tomlkit==0.12.0
|
111 |
+
toolz==0.12.1
|
112 |
+
torch==2.2.0
|
113 |
+
tqdm==4.66.4
|
114 |
+
transformers==4.36.1
|
115 |
+
trimesh==4.0.5
|
116 |
+
triton==2.2.0
|
117 |
+
typer==0.12.3
|
118 |
+
typing-inspect==0.9.0
|
119 |
+
typing_extensions==4.11.0
|
120 |
+
tzdata==2024.1
|
121 |
+
ujson==5.10.0
|
122 |
+
urllib3==2.2.1
|
123 |
+
uvicorn==0.30.0
|
124 |
+
uvloop==0.19.0
|
125 |
+
watchfiles==0.22.0
|
126 |
+
websockets==11.0.3
|
127 |
+
wrapt==1.16.0
|
128 |
+
xformers==0.0.24
|
129 |
+
xxhash==3.4.1
|
130 |
+
yarl==1.9.4
|
131 |
+
zipp==3.19.1
|
132 |
+
einops==0.7.0
|
requirements_min.txt
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=4.32.1
|
2 |
+
gradio-imageslider>=0.0.20
|
3 |
+
pygltflib==1.16.1
|
4 |
+
trimesh==4.0.5
|
5 |
+
imageio
|
6 |
+
imageio-ffmpeg
|
7 |
+
Pillow
|
8 |
+
einops==0.7.0
|
9 |
+
|
10 |
+
spaces
|
11 |
+
accelerate
|
12 |
+
diffusers>=0.28.0
|
13 |
+
matplotlib==3.8.2
|
14 |
+
scipy==1.11.4
|
15 |
+
torch==2.0.1
|
16 |
+
transformers==4.36.1
|
17 |
+
xformers==0.0.21
|
stablediffuse/__init__.py
ADDED
File without changes
|
stablediffuse/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (162 Bytes). View file
|
|
stablediffuse/__pycache__/pipeline_yoso_diffuse.cpython-39.pyc
ADDED
Binary file (24.3 kB). View file
|
|
stablediffuse/pipeline_yoso_diffuse.py
ADDED
@@ -0,0 +1,724 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Marigold authors, PRS ETH Zurich. All rights reserved.
|
2 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# --------------------------------------------------------------------------
|
16 |
+
# More information and citation instructions are available on the
|
17 |
+
# --------------------------------------------------------------------------
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
from PIL import Image
|
24 |
+
from tqdm.auto import tqdm
|
25 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
26 |
+
|
27 |
+
|
28 |
+
from diffusers.image_processor import PipelineImageInput
|
29 |
+
from diffusers.models import (
|
30 |
+
AutoencoderKL,
|
31 |
+
UNet2DConditionModel,
|
32 |
+
ControlNetModel,
|
33 |
+
)
|
34 |
+
from diffusers.schedulers import (
|
35 |
+
DDIMScheduler
|
36 |
+
)
|
37 |
+
|
38 |
+
from diffusers.utils import (
|
39 |
+
BaseOutput,
|
40 |
+
logging,
|
41 |
+
replace_example_docstring,
|
42 |
+
)
|
43 |
+
|
44 |
+
|
45 |
+
from diffusers.utils.torch_utils import randn_tensor
|
46 |
+
from diffusers.pipelines.controlnet import StableDiffusionControlNetPipeline
|
47 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
48 |
+
from diffusers.pipelines.marigold.marigold_image_processing import MarigoldImageProcessor
|
49 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
50 |
+
|
51 |
+
import pdb
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
56 |
+
|
57 |
+
|
58 |
+
EXAMPLE_DOC_STRING = """
|
59 |
+
Examples:
|
60 |
+
```py
|
61 |
+
>>> import diffusers
|
62 |
+
>>> import torch
|
63 |
+
|
64 |
+
>>> pipe = diffusers.MarigoldNormalsPipeline.from_pretrained(
|
65 |
+
... "prs-eth/marigold-normals-lcm-v0-1", variant="fp16", torch_dtype=torch.float16
|
66 |
+
... ).to("cuda")
|
67 |
+
|
68 |
+
>>> image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
|
69 |
+
>>> normals = pipe(image)
|
70 |
+
|
71 |
+
>>> vis = pipe.image_processor.visualize_normals(normals.prediction)
|
72 |
+
>>> vis[0].save("einstein_normals.png")
|
73 |
+
```
|
74 |
+
"""
|
75 |
+
|
76 |
+
|
77 |
+
@dataclass
|
78 |
+
class YOSODiffuseOutput(BaseOutput):
|
79 |
+
"""
|
80 |
+
Output class for Marigold monocular normals prediction pipeline.
|
81 |
+
|
82 |
+
Args:
|
83 |
+
prediction (`np.ndarray`, `torch.Tensor`):
|
84 |
+
Predicted normals with values in the range [-1, 1]. The shape is always $numimages \times 3 \times height
|
85 |
+
\times width$, regardless of whether the images were passed as a 4D array or a list.
|
86 |
+
uncertainty (`None`, `np.ndarray`, `torch.Tensor`):
|
87 |
+
Uncertainty maps computed from the ensemble, with values in the range [0, 1]. The shape is $numimages
|
88 |
+
\times 1 \times height \times width$.
|
89 |
+
latent (`None`, `torch.Tensor`):
|
90 |
+
Latent features corresponding to the predictions, compatible with the `latents` argument of the pipeline.
|
91 |
+
The shape is $numimages * numensemble \times 4 \times latentheight \times latentwidth$.
|
92 |
+
"""
|
93 |
+
|
94 |
+
prediction: Union[np.ndarray, torch.Tensor]
|
95 |
+
latent: Union[None, torch.Tensor]
|
96 |
+
gaus_noise: Union[None, torch.Tensor]
|
97 |
+
|
98 |
+
|
99 |
+
class YOSODiffusePipeline(StableDiffusionControlNetPipeline):
|
100 |
+
""" Pipeline for monocular normals estimation using the Marigold method: https://marigoldmonodepth.github.io.
|
101 |
+
Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance.
|
102 |
+
|
103 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
104 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
105 |
+
|
106 |
+
The pipeline also inherits the following loading methods:
|
107 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
108 |
+
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
109 |
+
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
110 |
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
111 |
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
112 |
+
|
113 |
+
Args:
|
114 |
+
vae ([`AutoencoderKL`]):
|
115 |
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
116 |
+
text_encoder ([`~transformers.CLIPTextModel`]):
|
117 |
+
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
118 |
+
tokenizer ([`~transformers.CLIPTokenizer`]):
|
119 |
+
A `CLIPTokenizer` to tokenize text.
|
120 |
+
unet ([`UNet2DConditionModel`]):
|
121 |
+
A `UNet2DConditionModel` to denoise the encoded image latents.
|
122 |
+
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
|
123 |
+
Provides additional conditioning to the `unet` during the denoising process. If you set multiple
|
124 |
+
ControlNets as a list, the outputs from each ControlNet are added together to create one combined
|
125 |
+
additional conditioning.
|
126 |
+
scheduler ([`SchedulerMixin`]):
|
127 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
128 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
129 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
130 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
131 |
+
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
132 |
+
about a model's potential harms.
|
133 |
+
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
134 |
+
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
135 |
+
"""
|
136 |
+
|
137 |
+
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
|
138 |
+
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
|
139 |
+
_exclude_from_cpu_offload = ["safety_checker"]
|
140 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
def __init__(
|
145 |
+
self,
|
146 |
+
vae: AutoencoderKL,
|
147 |
+
text_encoder: CLIPTextModel,
|
148 |
+
tokenizer: CLIPTokenizer,
|
149 |
+
unet: UNet2DConditionModel,
|
150 |
+
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel]],
|
151 |
+
scheduler: Union[DDIMScheduler],
|
152 |
+
safety_checker: StableDiffusionSafetyChecker,
|
153 |
+
feature_extractor: CLIPImageProcessor,
|
154 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
155 |
+
requires_safety_checker: bool = True,
|
156 |
+
default_denoising_steps: Optional[int] = 1,
|
157 |
+
default_processing_resolution: Optional[int] = 768,
|
158 |
+
prompt="",
|
159 |
+
empty_text_embedding=None,
|
160 |
+
t_start: Optional[int] = 401,
|
161 |
+
):
|
162 |
+
super().__init__(
|
163 |
+
vae,
|
164 |
+
text_encoder,
|
165 |
+
tokenizer,
|
166 |
+
unet,
|
167 |
+
controlnet,
|
168 |
+
scheduler,
|
169 |
+
safety_checker,
|
170 |
+
feature_extractor,
|
171 |
+
image_encoder,
|
172 |
+
requires_safety_checker,
|
173 |
+
)
|
174 |
+
|
175 |
+
# TODO yoso ImageProcessor
|
176 |
+
self.image_processor = MarigoldImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
177 |
+
self.control_image_processor = MarigoldImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
178 |
+
self.default_denoising_steps = default_denoising_steps
|
179 |
+
self.default_processing_resolution = default_processing_resolution
|
180 |
+
self.prompt = prompt
|
181 |
+
self.prompt_embeds = None
|
182 |
+
self.empty_text_embedding = empty_text_embedding
|
183 |
+
self.t_start= t_start # target_out latents
|
184 |
+
|
185 |
+
def check_inputs(
|
186 |
+
self,
|
187 |
+
image: PipelineImageInput,
|
188 |
+
num_inference_steps: int,
|
189 |
+
ensemble_size: int,
|
190 |
+
processing_resolution: int,
|
191 |
+
resample_method_input: str,
|
192 |
+
resample_method_output: str,
|
193 |
+
batch_size: int,
|
194 |
+
ensembling_kwargs: Optional[Dict[str, Any]],
|
195 |
+
latents: Optional[torch.Tensor],
|
196 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]],
|
197 |
+
output_type: str,
|
198 |
+
output_uncertainty: bool,
|
199 |
+
) -> int:
|
200 |
+
if num_inference_steps is None:
|
201 |
+
raise ValueError("`num_inference_steps` is not specified and could not be resolved from the model config.")
|
202 |
+
if num_inference_steps < 1:
|
203 |
+
raise ValueError("`num_inference_steps` must be positive.")
|
204 |
+
if ensemble_size < 1:
|
205 |
+
raise ValueError("`ensemble_size` must be positive.")
|
206 |
+
if ensemble_size == 2:
|
207 |
+
logger.warning(
|
208 |
+
"`ensemble_size` == 2 results are similar to no ensembling (1); "
|
209 |
+
"consider increasing the value to at least 3."
|
210 |
+
)
|
211 |
+
if ensemble_size == 1 and output_uncertainty:
|
212 |
+
raise ValueError(
|
213 |
+
"Computing uncertainty by setting `output_uncertainty=True` also requires setting `ensemble_size` "
|
214 |
+
"greater than 1."
|
215 |
+
)
|
216 |
+
if processing_resolution is None:
|
217 |
+
raise ValueError(
|
218 |
+
"`processing_resolution` is not specified and could not be resolved from the model config."
|
219 |
+
)
|
220 |
+
if processing_resolution < 0:
|
221 |
+
raise ValueError(
|
222 |
+
"`processing_resolution` must be non-negative: 0 for native resolution, or any positive value for "
|
223 |
+
"downsampled processing."
|
224 |
+
)
|
225 |
+
if processing_resolution % self.vae_scale_factor != 0:
|
226 |
+
raise ValueError(f"`processing_resolution` must be a multiple of {self.vae_scale_factor}.")
|
227 |
+
if resample_method_input not in ("nearest", "nearest-exact", "bilinear", "bicubic", "area"):
|
228 |
+
raise ValueError(
|
229 |
+
"`resample_method_input` takes string values compatible with PIL library: "
|
230 |
+
"nearest, nearest-exact, bilinear, bicubic, area."
|
231 |
+
)
|
232 |
+
if resample_method_output not in ("nearest", "nearest-exact", "bilinear", "bicubic", "area"):
|
233 |
+
raise ValueError(
|
234 |
+
"`resample_method_output` takes string values compatible with PIL library: "
|
235 |
+
"nearest, nearest-exact, bilinear, bicubic, area."
|
236 |
+
)
|
237 |
+
if batch_size < 1:
|
238 |
+
raise ValueError("`batch_size` must be positive.")
|
239 |
+
if output_type not in ["pt", "np"]:
|
240 |
+
raise ValueError("`output_type` must be one of `pt` or `np`.")
|
241 |
+
if latents is not None and generator is not None:
|
242 |
+
raise ValueError("`latents` and `generator` cannot be used together.")
|
243 |
+
if ensembling_kwargs is not None:
|
244 |
+
if not isinstance(ensembling_kwargs, dict):
|
245 |
+
raise ValueError("`ensembling_kwargs` must be a dictionary.")
|
246 |
+
if "reduction" in ensembling_kwargs and ensembling_kwargs["reduction"] not in ("closest", "mean"):
|
247 |
+
raise ValueError("`ensembling_kwargs['reduction']` can be either `'closest'` or `'mean'`.")
|
248 |
+
|
249 |
+
# image checks
|
250 |
+
num_images = 0
|
251 |
+
W, H = None, None
|
252 |
+
if not isinstance(image, list):
|
253 |
+
image = [image]
|
254 |
+
for i, img in enumerate(image):
|
255 |
+
if isinstance(img, np.ndarray) or torch.is_tensor(img):
|
256 |
+
if img.ndim not in (2, 3, 4):
|
257 |
+
raise ValueError(f"`image[{i}]` has unsupported dimensions or shape: {img.shape}.")
|
258 |
+
H_i, W_i = img.shape[-2:]
|
259 |
+
N_i = 1
|
260 |
+
if img.ndim == 4:
|
261 |
+
N_i = img.shape[0]
|
262 |
+
elif isinstance(img, Image.Image):
|
263 |
+
W_i, H_i = img.size
|
264 |
+
N_i = 1
|
265 |
+
else:
|
266 |
+
raise ValueError(f"Unsupported `image[{i}]` type: {type(img)}.")
|
267 |
+
if W is None:
|
268 |
+
W, H = W_i, H_i
|
269 |
+
elif (W, H) != (W_i, H_i):
|
270 |
+
raise ValueError(
|
271 |
+
f"Input `image[{i}]` has incompatible dimensions {(W_i, H_i)} with the previous images {(W, H)}"
|
272 |
+
)
|
273 |
+
num_images += N_i
|
274 |
+
|
275 |
+
# latents checks
|
276 |
+
if latents is not None:
|
277 |
+
if not torch.is_tensor(latents):
|
278 |
+
raise ValueError("`latents` must be a torch.Tensor.")
|
279 |
+
if latents.dim() != 4:
|
280 |
+
raise ValueError(f"`latents` has unsupported dimensions or shape: {latents.shape}.")
|
281 |
+
|
282 |
+
if processing_resolution > 0:
|
283 |
+
max_orig = max(H, W)
|
284 |
+
new_H = H * processing_resolution // max_orig
|
285 |
+
new_W = W * processing_resolution // max_orig
|
286 |
+
if new_H == 0 or new_W == 0:
|
287 |
+
raise ValueError(f"Extreme aspect ratio of the input image: [{W} x {H}]")
|
288 |
+
W, H = new_W, new_H
|
289 |
+
w = (W + self.vae_scale_factor - 1) // self.vae_scale_factor
|
290 |
+
h = (H + self.vae_scale_factor - 1) // self.vae_scale_factor
|
291 |
+
shape_expected = (num_images * ensemble_size, self.vae.config.latent_channels, h, w)
|
292 |
+
|
293 |
+
if latents.shape != shape_expected:
|
294 |
+
raise ValueError(f"`latents` has unexpected shape={latents.shape} expected={shape_expected}.")
|
295 |
+
|
296 |
+
# generator checks
|
297 |
+
if generator is not None:
|
298 |
+
if isinstance(generator, list):
|
299 |
+
if len(generator) != num_images * ensemble_size:
|
300 |
+
raise ValueError(
|
301 |
+
"The number of generators must match the total number of ensemble members for all input images."
|
302 |
+
)
|
303 |
+
if not all(g.device.type == generator[0].device.type for g in generator):
|
304 |
+
raise ValueError("`generator` device placement is not consistent in the list.")
|
305 |
+
elif not isinstance(generator, torch.Generator):
|
306 |
+
raise ValueError(f"Unsupported generator type: {type(generator)}.")
|
307 |
+
|
308 |
+
return num_images
|
309 |
+
|
310 |
+
def progress_bar(self, iterable=None, total=None, desc=None, leave=True):
|
311 |
+
if not hasattr(self, "_progress_bar_config"):
|
312 |
+
self._progress_bar_config = {}
|
313 |
+
elif not isinstance(self._progress_bar_config, dict):
|
314 |
+
raise ValueError(
|
315 |
+
f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
|
316 |
+
)
|
317 |
+
|
318 |
+
progress_bar_config = dict(**self._progress_bar_config)
|
319 |
+
progress_bar_config["desc"] = progress_bar_config.get("desc", desc)
|
320 |
+
progress_bar_config["leave"] = progress_bar_config.get("leave", leave)
|
321 |
+
if iterable is not None:
|
322 |
+
return tqdm(iterable, **progress_bar_config)
|
323 |
+
elif total is not None:
|
324 |
+
return tqdm(total=total, **progress_bar_config)
|
325 |
+
else:
|
326 |
+
raise ValueError("Either `total` or `iterable` has to be defined.")
|
327 |
+
|
328 |
+
@torch.no_grad()
|
329 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
330 |
+
def __call__(
|
331 |
+
self,
|
332 |
+
image: PipelineImageInput,
|
333 |
+
prompt: Union[str, List[str]] = None,
|
334 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
335 |
+
num_inference_steps: Optional[int] = None,
|
336 |
+
ensemble_size: int = 1,
|
337 |
+
processing_resolution: Optional[int] = None,
|
338 |
+
match_input_resolution: bool = True,
|
339 |
+
resample_method_input: str = "bilinear",
|
340 |
+
resample_method_output: str = "bilinear",
|
341 |
+
batch_size: int = 1,
|
342 |
+
ensembling_kwargs: Optional[Dict[str, Any]] = None,
|
343 |
+
latents: Optional[Union[torch.Tensor, List[torch.Tensor]]] = None,
|
344 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
345 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
346 |
+
num_images_per_prompt: Optional[int] = 1,
|
347 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
348 |
+
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
349 |
+
output_type: str = "np",
|
350 |
+
output_uncertainty: bool = False,
|
351 |
+
output_latent: bool = False,
|
352 |
+
skip_preprocess: bool = False,
|
353 |
+
return_dict: bool = True,
|
354 |
+
**kwargs,
|
355 |
+
):
|
356 |
+
"""
|
357 |
+
Function invoked when calling the pipeline.
|
358 |
+
|
359 |
+
Args:
|
360 |
+
image (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`),
|
361 |
+
`List[torch.Tensor]`: An input image or images used as an input for the normals estimation task. For
|
362 |
+
arrays and tensors, the expected value range is between `[0, 1]`. Passing a batch of images is possible
|
363 |
+
by providing a four-dimensional array or a tensor. Additionally, a list of images of two- or
|
364 |
+
three-dimensional arrays or tensors can be passed. In the latter case, all list elements must have the
|
365 |
+
same width and height.
|
366 |
+
num_inference_steps (`int`, *optional*, defaults to `None`):
|
367 |
+
Number of denoising diffusion steps during inference. The default value `None` results in automatic
|
368 |
+
selection. The number of steps should be at least 10 with the full Marigold models, and between 1 and 4
|
369 |
+
for Marigold-LCM models.
|
370 |
+
ensemble_size (`int`, defaults to `1`):
|
371 |
+
Number of ensemble predictions. Recommended values are 5 and higher for better precision, or 1 for
|
372 |
+
faster inference.
|
373 |
+
processing_resolution (`int`, *optional*, defaults to `None`):
|
374 |
+
Effective processing resolution. When set to `0`, matches the larger input image dimension. This
|
375 |
+
produces crisper predictions, but may also lead to the overall loss of global context. The default
|
376 |
+
value `None` resolves to the optimal value from the model config.
|
377 |
+
match_input_resolution (`bool`, *optional*, defaults to `True`):
|
378 |
+
When enabled, the output prediction is resized to match the input dimensions. When disabled, the longer
|
379 |
+
side of the output will equal to `processing_resolution`.
|
380 |
+
resample_method_input (`str`, *optional*, defaults to `"bilinear"`):
|
381 |
+
Resampling method used to resize input images to `processing_resolution`. The accepted values are:
|
382 |
+
`"nearest"`, `"nearest-exact"`, `"bilinear"`, `"bicubic"`, or `"area"`.
|
383 |
+
resample_method_output (`str`, *optional*, defaults to `"bilinear"`):
|
384 |
+
Resampling method used to resize output predictions to match the input resolution. The accepted values
|
385 |
+
are `"nearest"`, `"nearest-exact"`, `"bilinear"`, `"bicubic"`, or `"area"`.
|
386 |
+
batch_size (`int`, *optional*, defaults to `1`):
|
387 |
+
Batch size; only matters when setting `ensemble_size` or passing a tensor of images.
|
388 |
+
ensembling_kwargs (`dict`, *optional*, defaults to `None`)
|
389 |
+
Extra dictionary with arguments for precise ensembling control. The following options are available:
|
390 |
+
- reduction (`str`, *optional*, defaults to `"closest"`): Defines the ensembling function applied in
|
391 |
+
every pixel location, can be either `"closest"` or `"mean"`.
|
392 |
+
latents (`torch.Tensor`, *optional*, defaults to `None`):
|
393 |
+
Latent noise tensors to replace the random initialization. These can be taken from the previous
|
394 |
+
function call's output.
|
395 |
+
generator (`torch.Generator`, or `List[torch.Generator]`, *optional*, defaults to `None`):
|
396 |
+
Random number generator object to ensure reproducibility.
|
397 |
+
output_type (`str`, *optional*, defaults to `"np"`):
|
398 |
+
Preferred format of the output's `prediction` and the optional `uncertainty` fields. The accepted
|
399 |
+
values are: `"np"` (numpy array) or `"pt"` (torch tensor).
|
400 |
+
output_uncertainty (`bool`, *optional*, defaults to `False`):
|
401 |
+
When enabled, the output's `uncertainty` field contains the predictive uncertainty map, provided that
|
402 |
+
the `ensemble_size` argument is set to a value above 2.
|
403 |
+
output_latent (`bool`, *optional*, defaults to `False`):
|
404 |
+
When enabled, the output's `latent` field contains the latent codes corresponding to the predictions
|
405 |
+
within the ensemble. These codes can be saved, modified, and used for subsequent calls with the
|
406 |
+
`latents` argument.
|
407 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
408 |
+
Whether or not to return a [`~pipelines.marigold.MarigoldDepthOutput`] instead of a plain tuple.
|
409 |
+
|
410 |
+
Examples:
|
411 |
+
|
412 |
+
Returns:
|
413 |
+
[`~pipelines.marigold.MarigoldNormalsOutput`] or `tuple`:
|
414 |
+
If `return_dict` is `True`, [`~pipelines.marigold.MarigoldNormalsOutput`] is returned, otherwise a
|
415 |
+
`tuple` is returned where the first element is the prediction, the second element is the uncertainty
|
416 |
+
(or `None`), and the third is the latent (or `None`).
|
417 |
+
"""
|
418 |
+
|
419 |
+
# 0. Resolving variables.
|
420 |
+
device = self._execution_device
|
421 |
+
dtype = self.dtype
|
422 |
+
|
423 |
+
# Model-specific optimal default values leading to fast and reasonable results.
|
424 |
+
if num_inference_steps is None:
|
425 |
+
num_inference_steps = self.default_denoising_steps
|
426 |
+
if processing_resolution is None:
|
427 |
+
processing_resolution = self.default_processing_resolution
|
428 |
+
|
429 |
+
# 1. Check inputs.
|
430 |
+
num_images = self.check_inputs(
|
431 |
+
image,
|
432 |
+
num_inference_steps,
|
433 |
+
ensemble_size,
|
434 |
+
processing_resolution,
|
435 |
+
resample_method_input,
|
436 |
+
resample_method_output,
|
437 |
+
batch_size,
|
438 |
+
ensembling_kwargs,
|
439 |
+
latents,
|
440 |
+
generator,
|
441 |
+
output_type,
|
442 |
+
output_uncertainty,
|
443 |
+
)
|
444 |
+
|
445 |
+
|
446 |
+
# 2. Prepare empty text conditioning.
|
447 |
+
# Model invocation: self.tokenizer, self.text_encoder.
|
448 |
+
if self.empty_text_embedding is None:
|
449 |
+
prompt = ""
|
450 |
+
text_inputs = self.tokenizer(
|
451 |
+
prompt,
|
452 |
+
padding="do_not_pad",
|
453 |
+
max_length=self.tokenizer.model_max_length,
|
454 |
+
truncation=True,
|
455 |
+
return_tensors="pt",
|
456 |
+
)
|
457 |
+
text_input_ids = text_inputs.input_ids.to(device)
|
458 |
+
self.empty_text_embedding = self.text_encoder(text_input_ids)[0] # [1,2,1024]
|
459 |
+
|
460 |
+
|
461 |
+
|
462 |
+
# 3. prepare prompt
|
463 |
+
if self.prompt_embeds is None:
|
464 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
465 |
+
self.prompt,
|
466 |
+
device,
|
467 |
+
num_images_per_prompt,
|
468 |
+
False,
|
469 |
+
negative_prompt,
|
470 |
+
prompt_embeds=prompt_embeds,
|
471 |
+
negative_prompt_embeds=None,
|
472 |
+
lora_scale=None,
|
473 |
+
clip_skip=None,
|
474 |
+
)
|
475 |
+
self.prompt_embeds = prompt_embeds
|
476 |
+
self.negative_prompt_embeds = negative_prompt_embeds
|
477 |
+
|
478 |
+
|
479 |
+
|
480 |
+
# 4. Preprocess input images. This function loads input image or images of compatible dimensions `(H, W)`,
|
481 |
+
# optionally downsamples them to the `processing_resolution` `(PH, PW)`, where
|
482 |
+
# `max(PH, PW) == processing_resolution`, and pads the dimensions to `(PPH, PPW)` such that these values are
|
483 |
+
# divisible by the latent space downscaling factor (typically 8 in Stable Diffusion). The default value `None`
|
484 |
+
# of `processing_resolution` resolves to the optimal value from the model config. It is a recommended mode of
|
485 |
+
# operation and leads to the most reasonable results. Using the native image resolution or any other processing
|
486 |
+
# resolution can lead to loss of either fine details or global context in the output predictions.
|
487 |
+
if not skip_preprocess:
|
488 |
+
image, padding, original_resolution = self.image_processor.preprocess(
|
489 |
+
image, processing_resolution, resample_method_input, device, dtype
|
490 |
+
) # [N,3,PPH,PPW]
|
491 |
+
else:
|
492 |
+
padding = (0, 0)
|
493 |
+
original_resolution = image.shape[2:]
|
494 |
+
# 5. Encode input image into latent space. At this step, each of the `N` input images is represented with `E`
|
495 |
+
# ensemble members. Each ensemble member is an independent diffused prediction, just initialized independently.
|
496 |
+
# Latents of each such predictions across all input images and all ensemble members are represented in the
|
497 |
+
# `pred_latent` variable. The variable `image_latent` is of the same shape: it contains each input image encoded
|
498 |
+
# into latent space and replicated `E` times. The latents can be either generated (see `generator` to ensure
|
499 |
+
# reproducibility), or passed explicitly via the `latents` argument. The latter can be set outside the pipeline
|
500 |
+
# code. For example, in the Marigold-LCM video processing demo, the latents initialization of a frame is taken
|
501 |
+
# as a convex combination of the latents output of the pipeline for the previous frame and a newly-sampled
|
502 |
+
# noise. This behavior can be achieved by setting the `output_latent` argument to `True`. The latent space
|
503 |
+
# dimensions are `(h, w)`. Encoding into latent space happens in batches of size `batch_size`.
|
504 |
+
# Model invocation: self.vae.encoder.
|
505 |
+
image_latent, pred_latent = self.prepare_latents(
|
506 |
+
image, latents, generator, ensemble_size, batch_size
|
507 |
+
) # [N*E,4,h,w], [N*E,4,h,w]
|
508 |
+
|
509 |
+
gaus_noise = pred_latent.detach().clone()
|
510 |
+
del image
|
511 |
+
|
512 |
+
|
513 |
+
# 6. obtain control_output
|
514 |
+
|
515 |
+
cond_scale =controlnet_conditioning_scale
|
516 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
517 |
+
image_latent.detach(),
|
518 |
+
self.t_start,
|
519 |
+
encoder_hidden_states=self.prompt_embeds,
|
520 |
+
conditioning_scale=cond_scale,
|
521 |
+
guess_mode=False,
|
522 |
+
return_dict=False,
|
523 |
+
)
|
524 |
+
|
525 |
+
# 7. YOSO sampling
|
526 |
+
latent_x_t = self.unet(
|
527 |
+
pred_latent,
|
528 |
+
self.t_start,
|
529 |
+
encoder_hidden_states=self.prompt_embeds,
|
530 |
+
down_block_additional_residuals=down_block_res_samples,
|
531 |
+
mid_block_additional_residual=mid_block_res_sample,
|
532 |
+
return_dict=False,
|
533 |
+
)[0]
|
534 |
+
|
535 |
+
|
536 |
+
del (
|
537 |
+
pred_latent,
|
538 |
+
image_latent,
|
539 |
+
)
|
540 |
+
|
541 |
+
# decoder
|
542 |
+
prediction = self.decode_prediction(latent_x_t)
|
543 |
+
prediction = self.image_processor.unpad_image(prediction, padding) # [N*E,3,PH,PW]
|
544 |
+
|
545 |
+
prediction = self.image_processor.resize_antialias(
|
546 |
+
prediction, original_resolution, resample_method_output, is_aa=False
|
547 |
+
) # [N,3,H,W]
|
548 |
+
|
549 |
+
if output_type == "np":
|
550 |
+
prediction = self.image_processor.pt_to_numpy(prediction) # [N,H,W,3]
|
551 |
+
|
552 |
+
# 11. Offload all models
|
553 |
+
self.maybe_free_model_hooks()
|
554 |
+
|
555 |
+
return YOSODiffuseOutput(
|
556 |
+
prediction=prediction,
|
557 |
+
latent=latent_x_t,
|
558 |
+
gaus_noise=gaus_noise,
|
559 |
+
)
|
560 |
+
|
561 |
+
# Copied from diffusers.pipelines.marigold.pipeline_marigold_depth.MarigoldDepthPipeline.prepare_latents
|
562 |
+
def prepare_latents(
|
563 |
+
self,
|
564 |
+
image: torch.Tensor,
|
565 |
+
latents: Optional[torch.Tensor],
|
566 |
+
generator: Optional[torch.Generator],
|
567 |
+
ensemble_size: int,
|
568 |
+
batch_size: int,
|
569 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
570 |
+
def retrieve_latents(encoder_output):
|
571 |
+
if hasattr(encoder_output, "latent_dist"):
|
572 |
+
return encoder_output.latent_dist.mode()
|
573 |
+
elif hasattr(encoder_output, "latents"):
|
574 |
+
return encoder_output.latents
|
575 |
+
else:
|
576 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
577 |
+
|
578 |
+
|
579 |
+
|
580 |
+
image_latent = torch.cat(
|
581 |
+
[
|
582 |
+
retrieve_latents(self.vae.encode(image[i : i + batch_size]))
|
583 |
+
for i in range(0, image.shape[0], batch_size)
|
584 |
+
],
|
585 |
+
dim=0,
|
586 |
+
) # [N,4,h,w]
|
587 |
+
image_latent = image_latent * self.vae.config.scaling_factor
|
588 |
+
image_latent = image_latent.repeat_interleave(ensemble_size, dim=0) # [N*E,4,h,w]
|
589 |
+
|
590 |
+
pred_latent = latents
|
591 |
+
if pred_latent is None:
|
592 |
+
pred_latent = randn_tensor(
|
593 |
+
image_latent.shape,
|
594 |
+
generator=generator,
|
595 |
+
device=image_latent.device,
|
596 |
+
dtype=image_latent.dtype,
|
597 |
+
) # [N*E,4,h,w]
|
598 |
+
|
599 |
+
return image_latent, pred_latent
|
600 |
+
|
601 |
+
def decode_prediction(self, pred_latent: torch.Tensor) -> torch.Tensor:
|
602 |
+
if pred_latent.dim() != 4 or pred_latent.shape[1] != self.vae.config.latent_channels:
|
603 |
+
raise ValueError(
|
604 |
+
f"Expecting 4D tensor of shape [B,{self.vae.config.latent_channels},H,W]; got {pred_latent.shape}."
|
605 |
+
)
|
606 |
+
|
607 |
+
prediction = self.vae.decode(pred_latent / self.vae.config.scaling_factor, return_dict=False)[0] # [B,3,H,W]
|
608 |
+
|
609 |
+
return prediction # [B,3,H,W]
|
610 |
+
|
611 |
+
@staticmethod
|
612 |
+
def normalize_normals(normals: torch.Tensor, eps: float = 1e-6) -> torch.Tensor:
|
613 |
+
if normals.dim() != 4 or normals.shape[1] != 3:
|
614 |
+
raise ValueError(f"Expecting 4D tensor of shape [B,3,H,W]; got {normals.shape}.")
|
615 |
+
|
616 |
+
norm = torch.norm(normals, dim=1, keepdim=True)
|
617 |
+
normals /= norm.clamp(min=eps)
|
618 |
+
|
619 |
+
return normals
|
620 |
+
|
621 |
+
@staticmethod
|
622 |
+
def ensemble_normals(
|
623 |
+
normals: torch.Tensor, output_uncertainty: bool, reduction: str = "closest"
|
624 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
625 |
+
"""
|
626 |
+
Ensembles the normals maps represented by the `normals` tensor with expected shape `(B, 3, H, W)`, where B is
|
627 |
+
the number of ensemble members for a given prediction of size `(H x W)`.
|
628 |
+
|
629 |
+
Args:
|
630 |
+
normals (`torch.Tensor`):
|
631 |
+
Input ensemble normals maps.
|
632 |
+
output_uncertainty (`bool`, *optional*, defaults to `False`):
|
633 |
+
Whether to output uncertainty map.
|
634 |
+
reduction (`str`, *optional*, defaults to `"closest"`):
|
635 |
+
Reduction method used to ensemble aligned predictions. The accepted values are: `"closest"` and
|
636 |
+
`"mean"`.
|
637 |
+
|
638 |
+
Returns:
|
639 |
+
A tensor of aligned and ensembled normals maps with shape `(1, 3, H, W)` and optionally a tensor of
|
640 |
+
uncertainties of shape `(1, 1, H, W)`.
|
641 |
+
"""
|
642 |
+
if normals.dim() != 4 or normals.shape[1] != 3:
|
643 |
+
raise ValueError(f"Expecting 4D tensor of shape [B,3,H,W]; got {normals.shape}.")
|
644 |
+
if reduction not in ("closest", "mean"):
|
645 |
+
raise ValueError(f"Unrecognized reduction method: {reduction}.")
|
646 |
+
|
647 |
+
mean_normals = normals.mean(dim=0, keepdim=True) # [1,3,H,W]
|
648 |
+
mean_normals = MarigoldNormalsPipeline.normalize_normals(mean_normals) # [1,3,H,W]
|
649 |
+
|
650 |
+
sim_cos = (mean_normals * normals).sum(dim=1, keepdim=True) # [E,1,H,W]
|
651 |
+
sim_cos = sim_cos.clamp(-1, 1) # required to avoid NaN in uncertainty with fp16
|
652 |
+
|
653 |
+
uncertainty = None
|
654 |
+
if output_uncertainty:
|
655 |
+
uncertainty = sim_cos.arccos() # [E,1,H,W]
|
656 |
+
uncertainty = uncertainty.mean(dim=0, keepdim=True) / np.pi # [1,1,H,W]
|
657 |
+
|
658 |
+
if reduction == "mean":
|
659 |
+
return mean_normals, uncertainty # [1,3,H,W], [1,1,H,W]
|
660 |
+
|
661 |
+
closest_indices = sim_cos.argmax(dim=0, keepdim=True) # [1,1,H,W]
|
662 |
+
closest_indices = closest_indices.repeat(1, 3, 1, 1) # [1,3,H,W]
|
663 |
+
closest_normals = torch.gather(normals, 0, closest_indices) # [1,3,H,W]
|
664 |
+
|
665 |
+
return closest_normals, uncertainty # [1,3,H,W], [1,1,H,W]
|
666 |
+
|
667 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
668 |
+
def retrieve_timesteps(
|
669 |
+
scheduler,
|
670 |
+
num_inference_steps: Optional[int] = None,
|
671 |
+
device: Optional[Union[str, torch.device]] = None,
|
672 |
+
timesteps: Optional[List[int]] = None,
|
673 |
+
sigmas: Optional[List[float]] = None,
|
674 |
+
**kwargs,
|
675 |
+
):
|
676 |
+
"""
|
677 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
678 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
679 |
+
|
680 |
+
Args:
|
681 |
+
scheduler (`SchedulerMixin`):
|
682 |
+
The scheduler to get timesteps from.
|
683 |
+
num_inference_steps (`int`):
|
684 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
685 |
+
must be `None`.
|
686 |
+
device (`str` or `torch.device`, *optional*):
|
687 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
688 |
+
timesteps (`List[int]`, *optional*):
|
689 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
690 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
691 |
+
sigmas (`List[float]`, *optional*):
|
692 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
693 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
694 |
+
|
695 |
+
Returns:
|
696 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
697 |
+
second element is the number of inference steps.
|
698 |
+
"""
|
699 |
+
if timesteps is not None and sigmas is not None:
|
700 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
701 |
+
if timesteps is not None:
|
702 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
703 |
+
if not accepts_timesteps:
|
704 |
+
raise ValueError(
|
705 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
706 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
707 |
+
)
|
708 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
709 |
+
timesteps = scheduler.timesteps
|
710 |
+
num_inference_steps = len(timesteps)
|
711 |
+
elif sigmas is not None:
|
712 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
713 |
+
if not accept_sigmas:
|
714 |
+
raise ValueError(
|
715 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
716 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
717 |
+
)
|
718 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
719 |
+
timesteps = scheduler.timesteps
|
720 |
+
num_inference_steps = len(timesteps)
|
721 |
+
else:
|
722 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
723 |
+
timesteps = scheduler.timesteps
|
724 |
+
return timesteps, num_inference_steps
|