|
''' |
|
Contributed by SagsMug. Modified by binary-husky |
|
https://github.com/oobabooga/text-generation-webui/pull/175 |
|
''' |
|
|
|
import asyncio |
|
import json |
|
import random |
|
import string |
|
import websockets |
|
import logging |
|
import time |
|
import threading |
|
import importlib |
|
from toolbox import get_conf, update_ui |
|
|
|
|
|
def random_hash(): |
|
letters = string.ascii_lowercase + string.digits |
|
return ''.join(random.choice(letters) for i in range(9)) |
|
|
|
async def run(context, max_token, temperature, top_p, addr, port): |
|
params = { |
|
'max_new_tokens': max_token, |
|
'do_sample': True, |
|
'temperature': temperature, |
|
'top_p': top_p, |
|
'typical_p': 1, |
|
'repetition_penalty': 1.05, |
|
'encoder_repetition_penalty': 1.0, |
|
'top_k': 0, |
|
'min_length': 0, |
|
'no_repeat_ngram_size': 0, |
|
'num_beams': 1, |
|
'penalty_alpha': 0, |
|
'length_penalty': 1, |
|
'early_stopping': True, |
|
'seed': -1, |
|
} |
|
session = random_hash() |
|
|
|
async with websockets.connect(f"ws://{addr}:{port}/queue/join") as websocket: |
|
while content := json.loads(await websocket.recv()): |
|
|
|
if content["msg"] == "send_hash": |
|
await websocket.send(json.dumps({ |
|
"session_hash": session, |
|
"fn_index": 12 |
|
})) |
|
elif content["msg"] == "estimation": |
|
pass |
|
elif content["msg"] == "send_data": |
|
await websocket.send(json.dumps({ |
|
"session_hash": session, |
|
"fn_index": 12, |
|
"data": [ |
|
context, |
|
params['max_new_tokens'], |
|
params['do_sample'], |
|
params['temperature'], |
|
params['top_p'], |
|
params['typical_p'], |
|
params['repetition_penalty'], |
|
params['encoder_repetition_penalty'], |
|
params['top_k'], |
|
params['min_length'], |
|
params['no_repeat_ngram_size'], |
|
params['num_beams'], |
|
params['penalty_alpha'], |
|
params['length_penalty'], |
|
params['early_stopping'], |
|
params['seed'], |
|
] |
|
})) |
|
elif content["msg"] == "process_starts": |
|
pass |
|
elif content["msg"] in ["process_generating", "process_completed"]: |
|
yield content["output"]["data"][0] |
|
|
|
|
|
if (content["msg"] == "process_completed"): |
|
break |
|
|
|
|
|
|
|
|
|
|
|
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None): |
|
""" |
|
发送至chatGPT,流式获取输出。 |
|
用于基础的对话功能。 |
|
inputs 是本次问询的输入 |
|
top_p, temperature是chatGPT的内部调优参数 |
|
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误) |
|
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容 |
|
additional_fn代表点击的哪个按钮,按钮见functional.py |
|
""" |
|
if additional_fn is not None: |
|
import core_functional |
|
importlib.reload(core_functional) |
|
core_functional = core_functional.get_core_functions() |
|
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) |
|
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"] |
|
|
|
raw_input = "What I would like to say is the following: " + inputs |
|
history.extend([inputs, ""]) |
|
chatbot.append([inputs, ""]) |
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") |
|
|
|
prompt = raw_input |
|
tgui_say = "" |
|
|
|
model_name, addr_port = llm_kwargs['llm_model'].split('@') |
|
assert ':' in addr_port, "LLM_MODEL 格式不正确!" + llm_kwargs['llm_model'] |
|
addr, port = addr_port.split(':') |
|
|
|
|
|
mutable = ["", time.time()] |
|
def run_coorotine(mutable): |
|
async def get_result(mutable): |
|
|
|
|
|
async for response in run(context=prompt, max_token=llm_kwargs['max_length'], |
|
temperature=llm_kwargs['temperature'], |
|
top_p=llm_kwargs['top_p'], addr=addr, port=port): |
|
print(response[len(mutable[0]):]) |
|
mutable[0] = response |
|
if (time.time() - mutable[1]) > 3: |
|
print('exit when no listener') |
|
break |
|
asyncio.run(get_result(mutable)) |
|
|
|
thread_listen = threading.Thread(target=run_coorotine, args=(mutable,), daemon=True) |
|
thread_listen.start() |
|
|
|
while thread_listen.is_alive(): |
|
time.sleep(1) |
|
mutable[1] = time.time() |
|
|
|
if tgui_say != mutable[0]: |
|
tgui_say = mutable[0] |
|
history[-1] = tgui_say |
|
chatbot[-1] = (history[-2], history[-1]) |
|
yield from update_ui(chatbot=chatbot, history=history) |
|
|
|
|
|
|
|
|
|
def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience=False): |
|
raw_input = "What I would like to say is the following: " + inputs |
|
prompt = raw_input |
|
tgui_say = "" |
|
model_name, addr_port = llm_kwargs['llm_model'].split('@') |
|
assert ':' in addr_port, "LLM_MODEL 格式不正确!" + llm_kwargs['llm_model'] |
|
addr, port = addr_port.split(':') |
|
|
|
|
|
def run_coorotine(observe_window): |
|
async def get_result(observe_window): |
|
async for response in run(context=prompt, max_token=llm_kwargs['max_length'], |
|
temperature=llm_kwargs['temperature'], |
|
top_p=llm_kwargs['top_p'], addr=addr, port=port): |
|
print(response[len(observe_window[0]):]) |
|
observe_window[0] = response |
|
if (time.time() - observe_window[1]) > 5: |
|
print('exit when no listener') |
|
break |
|
asyncio.run(get_result(observe_window)) |
|
thread_listen = threading.Thread(target=run_coorotine, args=(observe_window,)) |
|
thread_listen.start() |
|
return observe_window[0] |
|
|