|
|
|
from transformers import AutoModel, AutoTokenizer |
|
import time |
|
import threading |
|
import importlib |
|
from toolbox import update_ui, get_conf |
|
from multiprocessing import Process, Pipe |
|
|
|
load_message = "jittorllms尚未加载,加载需要一段时间。注意,请避免混用多种jittor模型,否则可能导致显存溢出而造成卡顿,取决于`config.py`的配置,jittorllms消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……" |
|
|
|
|
|
class GetGLMHandle(Process): |
|
def __init__(self): |
|
super().__init__(daemon=True) |
|
self.parent, self.child = Pipe() |
|
self.jittorllms_model = None |
|
self.info = "" |
|
self.local_history = [] |
|
self.success = True |
|
self.check_dependency() |
|
self.start() |
|
self.threadLock = threading.Lock() |
|
|
|
def check_dependency(self): |
|
try: |
|
import pandas |
|
self.info = "依赖检测通过" |
|
self.success = True |
|
except: |
|
from toolbox import trimmed_format_exc |
|
self.info = r"缺少jittorllms的依赖,如果要使用jittorllms,除了基础的pip依赖以外,您还需要运行`pip install -r request_llm/requirements_jittorllms.txt -i https://pypi.jittor.org/simple -I`"+\ |
|
r"和`git clone https://gitlink.org.cn/jittor/JittorLLMs.git --depth 1 request_llm/jittorllms`两个指令来安装jittorllms的依赖(在项目根目录运行这两个指令)。" +\ |
|
r"警告:安装jittorllms依赖后将完全破坏现有的pytorch环境,建议使用docker环境!" + trimmed_format_exc() |
|
self.success = False |
|
|
|
def ready(self): |
|
return self.jittorllms_model is not None |
|
|
|
def run(self): |
|
|
|
|
|
def validate_path(): |
|
import os, sys |
|
dir_name = os.path.dirname(__file__) |
|
env = os.environ.get("PATH", "") |
|
os.environ["PATH"] = env.replace('/cuda/bin', '/x/bin') |
|
root_dir_assume = os.path.abspath(os.path.dirname(__file__) + '/..') |
|
os.chdir(root_dir_assume + '/request_llm/jittorllms') |
|
sys.path.append(root_dir_assume + '/request_llm/jittorllms') |
|
validate_path() |
|
|
|
def load_model(): |
|
import types |
|
try: |
|
if self.jittorllms_model is None: |
|
device, = get_conf('LOCAL_MODEL_DEVICE') |
|
from .jittorllms.models import get_model |
|
|
|
args_dict = {'model': 'pangualpha'} |
|
print('self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))') |
|
self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict)) |
|
print('done get model') |
|
except: |
|
self.child.send('[Local Message] Call jittorllms fail 不能正常加载jittorllms的参数。') |
|
raise RuntimeError("不能正常加载jittorllms的参数!") |
|
print('load_model') |
|
load_model() |
|
|
|
|
|
print('进入任务等待状态') |
|
while True: |
|
|
|
kwargs = self.child.recv() |
|
query = kwargs['query'] |
|
history = kwargs['history'] |
|
|
|
if len(self.local_history) > 0 and len(history)==0: |
|
print('触发重置') |
|
self.jittorllms_model.reset() |
|
self.local_history.append(query) |
|
|
|
print('收到消息,开始请求') |
|
try: |
|
for response in self.jittorllms_model.stream_chat(query, history): |
|
print(response) |
|
self.child.send(response) |
|
except: |
|
from toolbox import trimmed_format_exc |
|
print(trimmed_format_exc()) |
|
self.child.send('[Local Message] Call jittorllms fail.') |
|
|
|
self.child.send('[Finish]') |
|
|
|
def stream_chat(self, **kwargs): |
|
|
|
self.threadLock.acquire() |
|
self.parent.send(kwargs) |
|
while True: |
|
res = self.parent.recv() |
|
if res != '[Finish]': |
|
yield res |
|
else: |
|
break |
|
self.threadLock.release() |
|
|
|
global pangu_glm_handle |
|
pangu_glm_handle = None |
|
|
|
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False): |
|
""" |
|
多线程方法 |
|
函数的说明请见 request_llm/bridge_all.py |
|
""" |
|
global pangu_glm_handle |
|
if pangu_glm_handle is None: |
|
pangu_glm_handle = GetGLMHandle() |
|
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + pangu_glm_handle.info |
|
if not pangu_glm_handle.success: |
|
error = pangu_glm_handle.info |
|
pangu_glm_handle = None |
|
raise RuntimeError(error) |
|
|
|
|
|
history_feedin = [] |
|
for i in range(len(history)//2): |
|
history_feedin.append([history[2*i], history[2*i+1]] ) |
|
|
|
watch_dog_patience = 5 |
|
response = "" |
|
for response in pangu_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']): |
|
print(response) |
|
if len(observe_window) >= 1: observe_window[0] = response |
|
if len(observe_window) >= 2: |
|
if (time.time()-observe_window[1]) > watch_dog_patience: |
|
raise RuntimeError("程序终止。") |
|
return response |
|
|
|
|
|
|
|
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None): |
|
""" |
|
单线程方法 |
|
函数的说明请见 request_llm/bridge_all.py |
|
""" |
|
chatbot.append((inputs, "")) |
|
|
|
global pangu_glm_handle |
|
if pangu_glm_handle is None: |
|
pangu_glm_handle = GetGLMHandle() |
|
chatbot[-1] = (inputs, load_message + "\n\n" + pangu_glm_handle.info) |
|
yield from update_ui(chatbot=chatbot, history=[]) |
|
if not pangu_glm_handle.success: |
|
pangu_glm_handle = None |
|
return |
|
|
|
if additional_fn is not None: |
|
import core_functional |
|
importlib.reload(core_functional) |
|
core_functional = core_functional.get_core_functions() |
|
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) |
|
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"] |
|
|
|
|
|
history_feedin = [] |
|
for i in range(len(history)//2): |
|
history_feedin.append([history[2*i], history[2*i+1]] ) |
|
|
|
|
|
response = "[Local Message]: 等待jittorllms响应中 ..." |
|
for response in pangu_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=system_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']): |
|
chatbot[-1] = (inputs, response) |
|
yield from update_ui(chatbot=chatbot, history=history) |
|
|
|
|
|
if response == "[Local Message]: 等待jittorllms响应中 ...": |
|
response = "[Local Message]: jittorllms响应异常 ..." |
|
history.extend([inputs, response]) |
|
yield from update_ui(chatbot=chatbot, history=history) |
|
|