|
|
|
from transformers import AutoModel, AutoTokenizer |
|
import time |
|
import importlib |
|
from toolbox import update_ui, get_conf |
|
from multiprocessing import Process, Pipe |
|
|
|
load_message = "ChatGLM尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,ChatGLM消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……" |
|
|
|
|
|
class GetGLMHandle(Process): |
|
def __init__(self): |
|
super().__init__(daemon=True) |
|
self.parent, self.child = Pipe() |
|
self.chatglm_model = None |
|
self.chatglm_tokenizer = None |
|
self.info = "" |
|
self.success = True |
|
self.check_dependency() |
|
self.start() |
|
|
|
def check_dependency(self): |
|
try: |
|
import sentencepiece |
|
self.info = "依赖检测通过" |
|
self.success = True |
|
except: |
|
self.info = "缺少ChatGLM的依赖,如果要使用ChatGLM,除了基础的pip依赖以外,您还需要运行`pip install -r request_llm/requirements_chatglm.txt`安装ChatGLM的依赖。" |
|
self.success = False |
|
|
|
def ready(self): |
|
return self.chatglm_model is not None |
|
|
|
def run(self): |
|
|
|
retry = 0 |
|
while True: |
|
try: |
|
if self.chatglm_model is None: |
|
self.chatglm_tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) |
|
device, = get_conf('LOCAL_MODEL_DEVICE') |
|
if device=='cpu': |
|
self.chatglm_model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float() |
|
else: |
|
self.chatglm_model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda() |
|
self.chatglm_model = self.chatglm_model.eval() |
|
break |
|
else: |
|
break |
|
except: |
|
retry += 1 |
|
if retry > 3: |
|
self.child.send('[Local Message] Call ChatGLM fail 不能正常加载ChatGLM的参数。') |
|
raise RuntimeError("不能正常加载ChatGLM的参数!") |
|
|
|
|
|
while True: |
|
kwargs = self.child.recv() |
|
try: |
|
for response, history in self.chatglm_model.stream_chat(self.chatglm_tokenizer, **kwargs): |
|
self.child.send(response) |
|
except: |
|
self.child.send('[Local Message] Call ChatGLM fail.') |
|
self.child.send('[Finish]') |
|
|
|
def stream_chat(self, **kwargs): |
|
self.parent.send(kwargs) |
|
while True: |
|
res = self.parent.recv() |
|
if res != '[Finish]': |
|
yield res |
|
else: |
|
break |
|
return |
|
|
|
global glm_handle |
|
glm_handle = None |
|
|
|
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False): |
|
""" |
|
多线程方法 |
|
函数的说明请见 request_llm/bridge_all.py |
|
""" |
|
global glm_handle |
|
if glm_handle is None: |
|
glm_handle = GetGLMHandle() |
|
observe_window[0] = load_message + "\n\n" + glm_handle.info |
|
if not glm_handle.success: |
|
error = glm_handle.info |
|
glm_handle = None |
|
raise RuntimeError(error) |
|
|
|
|
|
history_feedin = [] |
|
history_feedin.append(["What can I do?", sys_prompt]) |
|
for i in range(len(history)//2): |
|
history_feedin.append([history[2*i], history[2*i+1]] ) |
|
|
|
watch_dog_patience = 5 |
|
response = "" |
|
for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']): |
|
observe_window[0] = response |
|
if len(observe_window) >= 2: |
|
if (time.time()-observe_window[1]) > watch_dog_patience: |
|
raise RuntimeError("程序终止。") |
|
return response |
|
|
|
|
|
|
|
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None): |
|
""" |
|
单线程方法 |
|
函数的说明请见 request_llm/bridge_all.py |
|
""" |
|
chatbot.append((inputs, "")) |
|
|
|
global glm_handle |
|
if glm_handle is None: |
|
glm_handle = GetGLMHandle() |
|
chatbot[-1] = (inputs, load_message + "\n\n" + glm_handle.info) |
|
yield from update_ui(chatbot=chatbot, history=[]) |
|
if not glm_handle.success: |
|
glm_handle = None |
|
return |
|
|
|
if additional_fn is not None: |
|
import core_functional |
|
importlib.reload(core_functional) |
|
core_functional = core_functional.get_core_functions() |
|
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) |
|
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"] |
|
|
|
history_feedin = [] |
|
history_feedin.append(["What can I do?", system_prompt] ) |
|
for i in range(len(history)//2): |
|
history_feedin.append([history[2*i], history[2*i+1]] ) |
|
|
|
for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']): |
|
chatbot[-1] = (inputs, response) |
|
yield from update_ui(chatbot=chatbot, history=history) |
|
|
|
history.extend([inputs, response]) |
|
yield from update_ui(chatbot=chatbot, history=history) |