|
|
|
|
|
""" |
|
该文件中主要包含2个函数 |
|
|
|
不具备多线程能力的函数: |
|
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程 |
|
|
|
具备多线程调用能力的函数 |
|
2. predict_no_ui_long_connection:在实验过程中发现调用predict_no_ui处理长文档时,和openai的连接容易断掉,这个函数用stream的方式解决这个问题,同样支持多线程 |
|
""" |
|
|
|
import os |
|
import json |
|
import time |
|
import gradio as gr |
|
import logging |
|
import traceback |
|
import requests |
|
import importlib |
|
|
|
|
|
|
|
from toolbox import get_conf, update_ui, trimmed_format_exc, ProxyNetworkActivate |
|
proxies, TIMEOUT_SECONDS, MAX_RETRY, ANTHROPIC_API_KEY = \ |
|
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'ANTHROPIC_API_KEY') |
|
|
|
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \ |
|
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。' |
|
|
|
def get_full_error(chunk, stream_response): |
|
""" |
|
获取完整的从Openai返回的报错 |
|
""" |
|
while True: |
|
try: |
|
chunk += next(stream_response) |
|
except: |
|
break |
|
return chunk |
|
|
|
|
|
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False): |
|
""" |
|
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。 |
|
inputs: |
|
是本次问询的输入 |
|
sys_prompt: |
|
系统静默prompt |
|
llm_kwargs: |
|
chatGPT的内部调优参数 |
|
history: |
|
是之前的对话列表 |
|
observe_window = None: |
|
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗 |
|
""" |
|
from anthropic import Anthropic |
|
watch_dog_patience = 5 |
|
prompt = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True) |
|
retry = 0 |
|
if len(ANTHROPIC_API_KEY) == 0: |
|
raise RuntimeError("没有设置ANTHROPIC_API_KEY选项") |
|
|
|
while True: |
|
try: |
|
|
|
from .bridge_all import model_info |
|
anthropic = Anthropic(api_key=ANTHROPIC_API_KEY) |
|
|
|
|
|
stream = anthropic.completions.create( |
|
prompt=prompt, |
|
max_tokens_to_sample=4096, |
|
model=llm_kwargs['llm_model'], |
|
stream=True, |
|
temperature = llm_kwargs['temperature'] |
|
) |
|
break |
|
except Exception as e: |
|
retry += 1 |
|
traceback.print_exc() |
|
if retry > MAX_RETRY: raise TimeoutError |
|
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……') |
|
result = '' |
|
try: |
|
for completion in stream: |
|
result += completion.completion |
|
if not console_slience: print(completion.completion, end='') |
|
if observe_window is not None: |
|
|
|
if len(observe_window) >= 1: observe_window[0] += completion.completion |
|
|
|
if len(observe_window) >= 2: |
|
if (time.time()-observe_window[1]) > watch_dog_patience: |
|
raise RuntimeError("用户取消了程序。") |
|
except Exception as e: |
|
traceback.print_exc() |
|
|
|
return result |
|
|
|
|
|
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None): |
|
""" |
|
发送至chatGPT,流式获取输出。 |
|
用于基础的对话功能。 |
|
inputs 是本次问询的输入 |
|
top_p, temperature是chatGPT的内部调优参数 |
|
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误) |
|
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容 |
|
additional_fn代表点击的哪个按钮,按钮见functional.py |
|
""" |
|
from anthropic import Anthropic |
|
if len(ANTHROPIC_API_KEY) == 0: |
|
chatbot.append((inputs, "没有设置ANTHROPIC_API_KEY")) |
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") |
|
return |
|
|
|
if additional_fn is not None: |
|
from core_functional import handle_core_functionality |
|
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot) |
|
|
|
raw_input = inputs |
|
logging.info(f'[raw_input] {raw_input}') |
|
chatbot.append((inputs, "")) |
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") |
|
|
|
try: |
|
prompt = generate_payload(inputs, llm_kwargs, history, system_prompt, stream) |
|
except RuntimeError as e: |
|
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。") |
|
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") |
|
return |
|
|
|
history.append(inputs); history.append("") |
|
|
|
retry = 0 |
|
while True: |
|
try: |
|
|
|
from .bridge_all import model_info |
|
anthropic = Anthropic(api_key=ANTHROPIC_API_KEY) |
|
|
|
|
|
stream = anthropic.completions.create( |
|
prompt=prompt, |
|
max_tokens_to_sample=4096, |
|
model=llm_kwargs['llm_model'], |
|
stream=True, |
|
temperature = llm_kwargs['temperature'] |
|
) |
|
|
|
break |
|
except: |
|
retry += 1 |
|
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg)) |
|
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else "" |
|
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) |
|
if retry > MAX_RETRY: raise TimeoutError |
|
|
|
gpt_replying_buffer = "" |
|
|
|
for completion in stream: |
|
try: |
|
gpt_replying_buffer = gpt_replying_buffer + completion.completion |
|
history[-1] = gpt_replying_buffer |
|
chatbot[-1] = (history[-2], history[-1]) |
|
yield from update_ui(chatbot=chatbot, history=history, msg='正常') |
|
|
|
except Exception as e: |
|
from toolbox import regular_txt_to_markdown |
|
tb_str = '```\n' + trimmed_format_exc() + '```' |
|
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str}") |
|
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + tb_str) |
|
return |
|
|
|
|
|
|
|
|
|
|
|
def convert_messages_to_prompt(messages): |
|
prompt = "" |
|
role_map = { |
|
"system": "Human", |
|
"user": "Human", |
|
"assistant": "Assistant", |
|
} |
|
for message in messages: |
|
role = message["role"] |
|
content = message["content"] |
|
transformed_role = role_map[role] |
|
prompt += f"\n\n{transformed_role.capitalize()}: {content}" |
|
prompt += "\n\nAssistant: " |
|
return prompt |
|
|
|
def generate_payload(inputs, llm_kwargs, history, system_prompt, stream): |
|
""" |
|
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备 |
|
""" |
|
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT |
|
|
|
conversation_cnt = len(history) // 2 |
|
|
|
messages = [{"role": "system", "content": system_prompt}] |
|
if conversation_cnt: |
|
for index in range(0, 2*conversation_cnt, 2): |
|
what_i_have_asked = {} |
|
what_i_have_asked["role"] = "user" |
|
what_i_have_asked["content"] = history[index] |
|
what_gpt_answer = {} |
|
what_gpt_answer["role"] = "assistant" |
|
what_gpt_answer["content"] = history[index+1] |
|
if what_i_have_asked["content"] != "": |
|
if what_gpt_answer["content"] == "": continue |
|
if what_gpt_answer["content"] == timeout_bot_msg: continue |
|
messages.append(what_i_have_asked) |
|
messages.append(what_gpt_answer) |
|
else: |
|
messages[-1]['content'] = what_gpt_answer['content'] |
|
|
|
what_i_ask_now = {} |
|
what_i_ask_now["role"] = "user" |
|
what_i_ask_now["content"] = inputs |
|
messages.append(what_i_ask_now) |
|
prompt = convert_messages_to_prompt(messages) |
|
|
|
return prompt |
|
|
|
|
|
|