|
|
|
from transformers import AutoModel, AutoTokenizer |
|
import time |
|
import os |
|
import json |
|
import threading |
|
import importlib |
|
from toolbox import update_ui, get_conf |
|
from multiprocessing import Process, Pipe |
|
|
|
load_message = "ChatGLMFT尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,ChatGLMFT消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……" |
|
|
|
def string_to_options(arguments): |
|
import argparse |
|
import shlex |
|
|
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument("--llm_to_learn", type=str, help="LLM model to learn", default="gpt-3.5-turbo") |
|
parser.add_argument("--prompt_prefix", type=str, help="Prompt prefix", default='') |
|
parser.add_argument("--system_prompt", type=str, help="System prompt", default='') |
|
parser.add_argument("--batch", type=int, help="System prompt", default=50) |
|
|
|
args = parser.parse_args(shlex.split(arguments)) |
|
return args |
|
|
|
|
|
|
|
class GetGLMFTHandle(Process): |
|
def __init__(self): |
|
super().__init__(daemon=True) |
|
self.parent, self.child = Pipe() |
|
self.chatglmft_model = None |
|
self.chatglmft_tokenizer = None |
|
self.info = "" |
|
self.success = True |
|
self.check_dependency() |
|
self.start() |
|
self.threadLock = threading.Lock() |
|
|
|
def check_dependency(self): |
|
try: |
|
import sentencepiece |
|
self.info = "依赖检测通过" |
|
self.success = True |
|
except: |
|
self.info = "缺少ChatGLMFT的依赖,如果要使用ChatGLMFT,除了基础的pip依赖以外,您还需要运行`pip install -r request_llm/requirements_chatglm.txt`安装ChatGLM的依赖。" |
|
self.success = False |
|
|
|
def ready(self): |
|
return self.chatglmft_model is not None |
|
|
|
def run(self): |
|
|
|
|
|
retry = 0 |
|
while True: |
|
try: |
|
if self.chatglmft_model is None: |
|
from transformers import AutoConfig |
|
import torch |
|
|
|
|
|
|
|
|
|
CHATGLM_PTUNING_CHECKPOINT, = get_conf('CHATGLM_PTUNING_CHECKPOINT') |
|
assert os.path.exists(CHATGLM_PTUNING_CHECKPOINT), "找不到微调模型检查点" |
|
conf = os.path.join(CHATGLM_PTUNING_CHECKPOINT, "config.json") |
|
with open(conf, 'r', encoding='utf8') as f: |
|
model_args = json.loads(f.read()) |
|
if 'model_name_or_path' not in model_args: |
|
model_args['model_name_or_path'] = model_args['_name_or_path'] |
|
self.chatglmft_tokenizer = AutoTokenizer.from_pretrained( |
|
model_args['model_name_or_path'], trust_remote_code=True) |
|
config = AutoConfig.from_pretrained( |
|
model_args['model_name_or_path'], trust_remote_code=True) |
|
|
|
config.pre_seq_len = model_args['pre_seq_len'] |
|
config.prefix_projection = model_args['prefix_projection'] |
|
|
|
print(f"Loading prefix_encoder weight from {CHATGLM_PTUNING_CHECKPOINT}") |
|
model = AutoModel.from_pretrained(model_args['model_name_or_path'], config=config, trust_remote_code=True) |
|
prefix_state_dict = torch.load(os.path.join(CHATGLM_PTUNING_CHECKPOINT, "pytorch_model.bin")) |
|
new_prefix_state_dict = {} |
|
for k, v in prefix_state_dict.items(): |
|
if k.startswith("transformer.prefix_encoder."): |
|
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v |
|
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict) |
|
|
|
if model_args['quantization_bit'] is not None: |
|
print(f"Quantized to {model_args['quantization_bit']} bit") |
|
model = model.quantize(model_args['quantization_bit']) |
|
model = model.cuda() |
|
if model_args['pre_seq_len'] is not None: |
|
|
|
model.transformer.prefix_encoder.float() |
|
self.chatglmft_model = model.eval() |
|
|
|
break |
|
else: |
|
break |
|
except Exception as e: |
|
retry += 1 |
|
if retry > 3: |
|
self.child.send('[Local Message] Call ChatGLMFT fail 不能正常加载ChatGLMFT的参数。') |
|
raise RuntimeError("不能正常加载ChatGLMFT的参数!") |
|
|
|
while True: |
|
|
|
kwargs = self.child.recv() |
|
|
|
try: |
|
for response, history in self.chatglmft_model.stream_chat(self.chatglmft_tokenizer, **kwargs): |
|
self.child.send(response) |
|
|
|
|
|
|
|
|
|
except: |
|
from toolbox import trimmed_format_exc |
|
self.child.send('[Local Message] Call ChatGLMFT fail.' + '\n```\n' + trimmed_format_exc() + '\n```\n') |
|
|
|
self.child.send('[Finish]') |
|
|
|
def stream_chat(self, **kwargs): |
|
|
|
self.threadLock.acquire() |
|
self.parent.send(kwargs) |
|
while True: |
|
res = self.parent.recv() |
|
if res != '[Finish]': |
|
yield res |
|
else: |
|
break |
|
self.threadLock.release() |
|
|
|
global glmft_handle |
|
glmft_handle = None |
|
|
|
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False): |
|
""" |
|
多线程方法 |
|
函数的说明请见 request_llm/bridge_all.py |
|
""" |
|
global glmft_handle |
|
if glmft_handle is None: |
|
glmft_handle = GetGLMFTHandle() |
|
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + glmft_handle.info |
|
if not glmft_handle.success: |
|
error = glmft_handle.info |
|
glmft_handle = None |
|
raise RuntimeError(error) |
|
|
|
|
|
history_feedin = [] |
|
history_feedin.append(["What can I do?", sys_prompt]) |
|
for i in range(len(history)//2): |
|
history_feedin.append([history[2*i], history[2*i+1]] ) |
|
|
|
watch_dog_patience = 5 |
|
response = "" |
|
for response in glmft_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']): |
|
if len(observe_window) >= 1: observe_window[0] = response |
|
if len(observe_window) >= 2: |
|
if (time.time()-observe_window[1]) > watch_dog_patience: |
|
raise RuntimeError("程序终止。") |
|
return response |
|
|
|
|
|
|
|
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None): |
|
""" |
|
单线程方法 |
|
函数的说明请见 request_llm/bridge_all.py |
|
""" |
|
chatbot.append((inputs, "")) |
|
|
|
global glmft_handle |
|
if glmft_handle is None: |
|
glmft_handle = GetGLMFTHandle() |
|
chatbot[-1] = (inputs, load_message + "\n\n" + glmft_handle.info) |
|
yield from update_ui(chatbot=chatbot, history=[]) |
|
if not glmft_handle.success: |
|
glmft_handle = None |
|
return |
|
|
|
if additional_fn is not None: |
|
from core_functional import handle_core_functionality |
|
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot) |
|
|
|
|
|
history_feedin = [] |
|
history_feedin.append(["What can I do?", system_prompt] ) |
|
for i in range(len(history)//2): |
|
history_feedin.append([history[2*i], history[2*i+1]] ) |
|
|
|
|
|
response = "[Local Message]: 等待ChatGLMFT响应中 ..." |
|
for response in glmft_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']): |
|
chatbot[-1] = (inputs, response) |
|
yield from update_ui(chatbot=chatbot, history=history) |
|
|
|
|
|
if response == "[Local Message]: 等待ChatGLMFT响应中 ...": |
|
response = "[Local Message]: ChatGLMFT响应异常 ..." |
|
history.extend([inputs, response]) |
|
yield from update_ui(chatbot=chatbot, history=history) |
|
|