Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
"""MiniProjectBDA_Review1.ipynb | |
Automatically generated by Colaboratory. | |
Original file is located at | |
https://colab.research.google.com/drive/1KQQu8_rON6eGoBJaX9ufEDEjuX_KJzN4 | |
# **Title: Anomaly Detection for Energy Usage Optimization** | |
#**Problem Statement:** | |
The project aims to develop an anomaly detection model to predict whether the energy usage in a building is anomalous or not. The significance of this project lies in the fact that anomalous energy usage implies energy wastage, which can have both environmental and economic implications. By identifying and addressing such instances, we can significantly contribute to energy conservation and cost reduction. | |
# **Dataset Description** | |
**train.csv** | |
*building_id* - Unique building id code. | |
*timestamp* - When the measurement was taken | |
*meter_reading*- Electricity consumption in kWh. | |
*anomaly* - Whether this reading is anomalous (1) or not (0). | |
""" | |
from pyspark.sql import SparkSession | |
from pyspark.sql.functions import col, split, substring, when | |
from pyspark.sql.types import IntegerType | |
from datetime import datetime | |
spark = SparkSession.builder.appName("EnergyAnomalyDetection").getOrCreate() | |
train = spark.read.csv("train.csv", header=True, inferSchema=True) | |
train.show() | |
print("Shape:", (train.count(), len(train.columns))) | |
train.select([col(c).alias(c) for c in train.columns]).na.fill(0).show() | |
train = train.withColumn("new", split(train["timestamp"], " ")) | |
train = train.withColumn("date", col("new")[0]) | |
train = train.withColumn("time", substring(col("new")[1], 0, 2).cast(IntegerType())) | |
train = train.drop("new", "timestamp") | |
train.show() | |
from pyspark.sql.functions import mean | |
numeric_columns = [col_name for col_name, data_type in train.dtypes if data_type in ['double', 'float', 'int']] | |
mean_values = train.select([mean(col(column)).alias(column) for column in numeric_columns]).collect()[0].asDict() | |
for column in numeric_columns: | |
train = train.withColumn(column, when(col(column).isNull(), mean_values[column]).otherwise(col(column))) | |
train.show() | |
train = train.withColumn("month", substring(col("date"), 6, 2).cast(IntegerType())) | |
train = train.withColumn("day", substring(col("date"), -2, 2).cast(IntegerType())) | |
train = train.drop("date") | |
train.show() | |
from pyspark.sql.functions import udf | |
import pyspark.sql.functions as F | |
def weekend_or_weekday_udf(year, month, day): | |
try: | |
d = datetime(year, month, day) | |
if d.weekday() > 4: | |
return 1 | |
else: | |
return 0 | |
except ValueError: | |
return None | |
train = train.withColumn("weekend", weekend_or_weekday_udf(F.lit(2016), col("month"), col("day"))) | |
train = train.withColumn("weekend", when(col("weekend").isNull(), 0).otherwise(col("weekend"))) | |
train.show() | |
import matplotlib.pyplot as plt | |
from pyspark.sql import SparkSession | |
from pyspark.sql.functions import mean | |
import numpy as np | |
data = train.groupBy('weekend').agg(mean('meter_reading').alias('mean_meter_reading')).collect() | |
weekend_mean = data[1]['mean_meter_reading'] | |
weekday_mean = data[0]['mean_meter_reading'] | |
labels = ['Weekday Mean Usage', 'Weekend Mean Usage'] | |
sizes = [weekday_mean, weekend_mean] | |
colors = plt.cm.Paired(np.arange(len(labels))) | |
plt.pie(sizes, labels=labels, colors=colors, autopct='%1.1f%%') | |
plt.axis('equal') | |
plt.show() | |
data = train.groupBy('month').agg(mean('meter_reading').alias('mean_meter_reading')).collect() | |
months = [row['month'] for row in data] | |
mean_readings = [row['mean_meter_reading'] for row in data] | |
plt.figure(figsize=(15, 5)) | |
plt.bar(months, mean_readings) | |
plt.title('Mean usage monthly.', fontsize=20) | |
plt.xlabel('Month', fontsize=15) | |
plt.ylabel('Mean Meter Reading', fontsize=15) | |
plt.xticks(months) | |
plt.show() | |
data = train.groupBy('day').agg(mean('meter_reading').alias('mean_meter_reading')).collect() | |
days = [row['day'] for row in data] | |
mean_readings = [row['mean_meter_reading'] for row in data] | |
plt.figure(figsize=(15, 5)) | |
plt.bar(days, mean_readings) | |
plt.title('Mean usage daily.', fontsize=20) | |
plt.xlabel('Day', fontsize=15) | |
plt.ylabel('Mean Meter Reading', fontsize=15) | |
plt.xticks(days) | |
plt.show() | |
neg = train.filter(train['anomaly'] == 0) | |
pos = train.filter(train['anomaly'] == 1) | |
neg_count = neg.count() | |
pos_count = pos.count() | |
print("Negative Shape:", neg_count) | |
print("Positive Shape:", pos_count) | |
train.show(5) | |
from pyspark.ml import Pipeline | |
from pyspark.ml.feature import StringIndexer, VectorAssembler | |
from pyspark.ml.classification import LogisticRegression | |
from pyspark.sql.types import IntegerType | |
inputColumns = ['building_id', 'meter_reading', 'time', 'month', 'day', 'weekend'] | |
outputColumn = "anomaly" | |
for col_name in inputColumns: | |
train = train.withColumn(col_name, train[col_name].cast(IntegerType())) | |
vector_assembler = VectorAssembler(inputCols=inputColumns, outputCol="features") | |
lr = LogisticRegression(labelCol=outputColumn, featuresCol="features") | |
stages = [vector_assembler, lr] | |
pipeline = Pipeline(stages=stages) | |
(train_df, test_df) = train.randomSplit([0.8, 0.2], seed=10) | |
pipeline_model = pipeline.fit(train_df) | |
predictions = pipeline_model.transform(test_df) | |
predictions.show(5) | |
from pyspark.ml.evaluation import BinaryClassificationEvaluator | |
evaluator = BinaryClassificationEvaluator(labelCol="anomaly") | |
accuracy = evaluator.evaluate(predictions) | |
print("Accuracy: ",accuracy) | |
pipeline_model.write().overwrite().save("/content/trained_model") | |
import gradio as gr | |
from pyspark.ml import PipelineModel | |
from pyspark.sql import SparkSession | |
from pyspark.ml.feature import VectorAssembler | |
loaded_model = PipelineModel.load("trained_model") | |
def predict(building_id, meter_reading, time, month, day, weekend): | |
user_input = spark.createDataFrame([(building_id, meter_reading, time, month, day, weekend)], | |
["building_id", "meter_reading", "time", "month", "day", "weekend"]) | |
input_columns = ["building_id", "meter_reading", "time", "month", "day", "weekend"] | |
assembler = VectorAssembler(inputCols=input_columns, outputCol="features") | |
user_input = assembler.transform(user_input) | |
try: | |
prediction_result = predictions.select("prediction").first()[0] | |
except Exception as e: | |
print("Error occurred during prediction:", e) | |
prediction_result = None | |
return prediction_result | |
iface = gr.Interface(fn=predict, | |
inputs=["number", "number", "number", "number", "number", "number"], | |
outputs="label") | |
iface.launch() |