Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from diffusers import StableDiffusionPipeline | |
def load_loras(pipe, lora_paths): | |
if lora_paths.strip() == "": | |
return pipe | |
loras = [l.strip() for l in lora_paths.split(",")] | |
return pipe | |
def generate_image(prompt, model_path, width, height, num_inference_steps, guidance_scale, lora_paths): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pipe = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float16) | |
pipe = pipe.to(device) | |
pipe = load_loras(pipe, lora_paths) | |
image = pipe(prompt=prompt, width=width, height=height, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale).images[0] | |
return image | |
with gr.Blocks() as demo: | |
gr.Markdown("## AI Image Generator") | |
model_path = gr.Textbox(label="Model Path", value="path/to/model", lines=1) | |
prompt = gr.Textbox(label="Prompt", lines=2, placeholder="Enter your prompt...") | |
width = gr.Slider(256, 1024, value=512, step=64, label="Width") | |
height = gr.Slider(256, 1024, value=512, step=64, label="Height") | |
guidance_scale = gr.Slider(1.0, 20.0, value=7.5, step=0.1, label="Guidance Scale") | |
num_steps = gr.Slider(1, 150, value=50, step=1, label="Steps") | |
lora_paths = gr.Textbox(label="LoRA Paths (comma separated)", value="", lines=1, placeholder="path1,path2,...") | |
output_image = gr.Image(label="Generated Image") | |
generate_button = gr.Button("Generate Image") | |
generate_button.click(fn=generate_image, inputs=[prompt, model_path, width, height, num_steps, guidance_scale, lora_paths], outputs=output_image) | |
demo.launch() | |