import gradio as gr import torch from diffusers import StableDiffusionPipeline def load_loras(pipe, lora_paths): if lora_paths.strip() == "": return pipe loras = [l.strip() for l in lora_paths.split(",")] return pipe def generate_image(prompt, model_path, width, height, num_inference_steps, guidance_scale, lora_paths): device = "cuda" if torch.cuda.is_available() else "cpu" pipe = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float16) pipe = pipe.to(device) pipe = load_loras(pipe, lora_paths) image = pipe(prompt=prompt, width=width, height=height, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale).images[0] return image with gr.Blocks() as demo: gr.Markdown("## AI Image Generator") model_path = gr.Textbox(label="Model Path", value="path/to/model", lines=1) prompt = gr.Textbox(label="Prompt", lines=2, placeholder="Enter your prompt...") width = gr.Slider(256, 1024, value=512, step=64, label="Width") height = gr.Slider(256, 1024, value=512, step=64, label="Height") guidance_scale = gr.Slider(1.0, 20.0, value=7.5, step=0.1, label="Guidance Scale") num_steps = gr.Slider(1, 150, value=50, step=1, label="Steps") lora_paths = gr.Textbox(label="LoRA Paths (comma separated)", value="", lines=1, placeholder="path1,path2,...") output_image = gr.Image(label="Generated Image") generate_button = gr.Button("Generate Image") generate_button.click(fn=generate_image, inputs=[prompt, model_path, width, height, num_steps, guidance_scale, lora_paths], outputs=output_image) demo.launch()