rail_obstruct / app.py
Sompote's picture
Upload app.py
049c77e verified
import gradio as gr
import numpy as np
import cv2
import requests
import json
import base64
from PIL import Image
import io
import os
from dotenv import load_dotenv
from collections import defaultdict
import time
# Load environment variables
load_dotenv()
# Define API endpoint from environment variable
API_URL = os.getenv("API_URL", "http://122.155.170.240:81")
print(f"Using API URL: {API_URL}")
DEFAULT_CONFIDENCE = float(os.getenv("DEFAULT_CONFIDENCE_THRESHOLD", "0.25"))
def calculate_iou(box1, box2):
"""Calculate Intersection over Union (IoU) between two bounding boxes"""
x1 = max(box1[0], box2[0])
y1 = max(box1[1], box2[1])
x2 = min(box1[2], box2[2])
y2 = min(box1[3], box2[3])
intersection = max(0, x2 - x1) * max(0, y2 - y1)
area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
union = area1 + area2 - intersection
return intersection / union if union > 0 else 0
def calculate_bbox_similarity(bbox1, bbox2):
"""Calculate similarity between two bounding boxes using IoU and center distance"""
try:
# Calculate IoU
iou = calculate_iou(bbox1, bbox2)
# Calculate center distance
center1 = get_box_center(bbox1)
center2 = get_box_center(bbox2)
if center1 is None or center2 is None:
return 0.0
distance = np.sqrt((center1[0] - center2[0])**2 + (center1[1] - center2[1])**2)
# Normalize distance based on bbox size
bbox_size = max(bbox1[2] - bbox1[0], bbox1[3] - bbox1[1])
normalized_distance = distance / max(bbox_size, 1)
# Combine IoU and distance for final similarity score
similarity = iou * 0.7 + max(0, 1 - normalized_distance * 0.3) * 0.3
return similarity
except Exception as e:
return 0.0
def get_box_center(bbox):
"""Calculate center point of bounding box"""
try:
# Handle different bbox formats (x,y,w,h) or (x1,y1,x2,y2)
if len(bbox) == 4:
if bbox[2] < bbox[0] or bbox[3] < bbox[1]: # If it's x1,y1,x2,y2 format
x = (bbox[0] + bbox[2]) / 2
y = (bbox[1] + bbox[3]) / 2
else: # If it's x,y,w,h format
x = bbox[0] + bbox[2]/2
y = bbox[1] + bbox[3]/2
else:
return None
return (x, y)
except Exception as e:
return None
def calculate_movement(prev_center, curr_center, min_movement=10):
"""Calculate if there's significant movement between frames"""
try:
if prev_center is None or curr_center is None:
return False
dx = curr_center[0] - prev_center[0]
dy = curr_center[1] - prev_center[1]
distance = np.sqrt(dx*dx + dy*dy)
return distance > min_movement
except Exception as e:
return False
class TrackedObject:
def __init__(self, obj_id, obj_class, bbox):
self.id = obj_id
self.class_name = obj_class
self.trajectory = [] # List of center points
self.bboxes = [] # List of bounding boxes
self.counted = False
self.last_seen = 0 # Frame number when last seen
self.first_seen = 0 # Frame number when first seen
self.frames_in_red_zone = 0 # Number of consecutive frames in red zone
self.warning_triggered = False # Whether warning has been triggered
self.red_zone_entry_frame = None # Frame when object entered red zone
self.similarity_scores = [] # Track similarity scores over time
self.add_detection(bbox)
def add_detection(self, bbox):
try:
center = get_box_center(bbox)
if center is not None:
self.trajectory.append(center)
self.bboxes.append(bbox)
# Keep only recent history to prevent memory issues
if len(self.trajectory) > 50:
self.trajectory = self.trajectory[-25:]
self.bboxes = self.bboxes[-25:]
except Exception as e:
pass
def has_movement(self, min_movement=10):
try:
if len(self.trajectory) < 2:
return False
return calculate_movement(self.trajectory[-2], self.trajectory[-1], min_movement)
except Exception as e:
return False
def update_red_zone_status(self, is_in_red_zone, frame_number):
"""Update red zone status and handle warnings"""
if is_in_red_zone:
if self.red_zone_entry_frame is None:
self.red_zone_entry_frame = frame_number
self.frames_in_red_zone += 1
# Check if warning should be triggered
if self.frames_in_red_zone > 3 and not self.warning_triggered:
self.warning_triggered = True
return True # Return True to indicate warning should be shown
else:
# Object left red zone, reset counters
self.frames_in_red_zone = 0
self.red_zone_entry_frame = None
self.warning_triggered = False
return False
def get_similarity_with(self, other_bbox, similarity_threshold=0.5):
"""Calculate similarity with another bounding box"""
if len(self.bboxes) == 0:
return 0.0
current_bbox = self.bboxes[-1]
return calculate_bbox_similarity(current_bbox, other_bbox)
def is_similar_object(obj1, obj2, similarity_threshold=0.6):
"""Check if two objects are similar based on class, position and bounding box similarity"""
try:
if obj1['class'] != obj2['class']:
return False
box1 = obj1['bbox']
box2 = obj2['bbox']
# Convert to x1,y1,x2,y2 format if needed
if len(box1) == 4 and len(box2) == 4:
if box1[2] < box1[0] or box1[3] < box1[1]: # Already in x1,y1,x2,y2
bbox1 = box1
else: # Convert from x,y,w,h to x1,y1,x2,y2
bbox1 = [box1[0], box1[1], box1[0] + box1[2], box1[1] + box1[3]]
if box2[2] < box2[0] or box2[3] < box2[1]: # Already in x1,y1,x2,y2
bbox2 = box2
else: # Convert from x,y,w,h to x1,y1,x2,y2
bbox2 = [box2[0], box2[1], box2[0] + box2[2], box2[1] + box2[3]]
similarity = calculate_bbox_similarity(bbox1, bbox2)
return similarity > similarity_threshold
return False
except Exception as e:
return False
# Global state for protection area and previous detections
class State:
def __init__(self):
self.protection_points = [] # Store clicked points
self.detected_segments = []
self.segment_image = None
self.selected_segments = []
self.previous_detections = None
self.cached_protection_area = None
self.current_image = None # Store current image for drawing
self.original_dims = None # Store original image dimensions
self.display_dims = None # Store display dimensions
self.tracked_objects = {} # Dictionary of tracked objects
self.next_obj_id = 0 # Counter for generating unique object IDs
self.object_count = defaultdict(int) # Count by class
self.frame_count = 0 # Count processed frames
self.red_zone_passed_objects = defaultdict(int) # Objects that passed through red zone
self.red_zone_warnings = [] # Store warning messages
self.time_window = 10 # Configurable time window for similarity comparison
self.similarity_threshold = 0.6 # Configurable similarity threshold
def reset_tracking(self):
"""Reset all tracking data"""
self.tracked_objects = {}
self.next_obj_id = 0
self.object_count = defaultdict(int)
self.frame_count = 0
self.red_zone_passed_objects = defaultdict(int)
self.red_zone_warnings = []
state = State()
def image_to_bytes(image):
"""Convert PIL Image to bytes for API request"""
# Log original image size
original_width, original_height = image.size
print(f"Original image dimensions: {original_width}x{original_height}")
# Convert image to bytes without resizing
img_byte_arr = io.BytesIO()
image.save(img_byte_arr, format='PNG')
print(f"Sending image with original dimensions: {original_width}x{original_height}")
return img_byte_arr.getvalue()
def base64_to_image(base64_str):
"""Convert base64 string to OpenCV image"""
img_data = base64.b64decode(base64_str)
nparr = np.frombuffer(img_data, np.uint8)
return cv2.imdecode(nparr, cv2.IMREAD_COLOR)
def opencv_to_pil(opencv_image):
"""Convert OpenCV image to PIL format"""
# Convert from BGR to RGB for PIL
rgb_image = cv2.cvtColor(opencv_image, cv2.COLOR_BGR2RGB)
return Image.fromarray(rgb_image)
def scale_point_to_original(x, y):
"""Scale display coordinates back to original image coordinates"""
if state.original_dims is None or state.display_dims is None:
return x, y
orig_w, orig_h = state.original_dims
disp_w, disp_h = state.display_dims
# Calculate scaling factors
scale_x = orig_w / disp_w
scale_y = orig_h / disp_h
# Scale the coordinates
orig_x = int(x * scale_x)
orig_y = int(y * scale_y)
return orig_x, orig_y
def scale_points_to_display(points):
"""Scale points from original image coordinates to display coordinates"""
if state.original_dims is None or state.display_dims is None:
return points
orig_w, orig_h = state.original_dims
disp_w, disp_h = state.display_dims
# Calculate scaling factors
scale_x = disp_w / orig_w
scale_y = disp_h / orig_h
# Scale all points
display_points = []
for point in points:
x = int(point[0] * scale_x)
y = int(point[1] * scale_y)
display_points.append([x, y])
return display_points
def draw_protection_area(image):
"""Draw protection area points and lines on the image"""
img = image.copy()
points = state.protection_points
# Draw existing points and lines
if len(points) > 0:
# Convert points to numpy array
points_array = np.array(points, dtype=np.int32)
# Draw lines between points
if len(points) > 1:
cv2.polylines(img, [points_array],
True if len(points) == 4 else False,
(0, 255, 0), 2)
# Draw points with numbers
for i, point in enumerate(points):
cv2.circle(img, tuple(point), 5, (0, 0, 255), -1)
cv2.putText(img, str(i+1),
(point[0]+10, point[1]+10),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)
# Fill polygon with semi-transparent color if we have at least 3 points
if len(points) >= 3:
overlay = img.copy()
cv2.fillPoly(overlay, [points_array], (0, 255, 0))
cv2.addWeighted(overlay, 0.3, img, 0.7, 0, img)
return img
def update_preview(video):
if video is None:
return None, [], gr.update(visible=False)
cap = cv2.VideoCapture(video)
ret, frame = cap.read()
cap.release()
if ret:
# Reset state
state.protection_points = []
state.detected_segments = []
state.segment_image = None
state.selected_segments = []
state.previous_detections = None
state.cached_protection_area = None
# Store original frame and its dimensions
state.current_image = frame.copy() # Store the original frame
state.original_dims = (frame.shape[1], frame.shape[0]) # (width, height)
state.display_dims = state.original_dims # Set display dims same as original
# Convert to RGB without resizing
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
return frame_rgb, gr.update(choices=[], value=[], visible=False)
return None, gr.update(choices=[], value=[], visible=False)
def handle_image_click(evt: gr.SelectData, img):
"""Handle mouse clicks on the image"""
if len(state.protection_points) >= 4:
# Reset points if we already have 4
state.protection_points = []
if state.current_image is None:
return img, "Error: No image loaded"
# Get click coordinates from the event - these are now in original scale
click_x, click_y = evt.index[0], evt.index[1]
# Add point directly (no scaling needed as we're working with original coordinates)
state.protection_points.append([click_x, click_y])
# Create a copy of the current image for display
display_img = state.current_image.copy()
# Draw points and lines
for i, point in enumerate(state.protection_points):
# Draw point
cv2.circle(display_img, (point[0], point[1]), 5, (0, 0, 255), -1)
cv2.putText(display_img, str(i+1),
(point[0] + 10, point[1] + 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)
# Draw lines between points
if len(state.protection_points) > 1:
points_array = np.array(state.protection_points, dtype=np.int32)
# Draw lines
cv2.polylines(display_img, [points_array],
True if len(state.protection_points) == 4 else False,
(0, 255, 0), 2)
# Fill polygon with semi-transparent color if we have at least 3 points
if len(state.protection_points) >= 3:
overlay = display_img.copy()
cv2.fillPoly(overlay, [points_array], (0, 255, 0))
cv2.addWeighted(overlay, 0.3, display_img, 0.7, 0, display_img)
# Convert to RGB for display
display_img_rgb = cv2.cvtColor(display_img, cv2.COLOR_BGR2RGB)
# Return the image and status
return display_img_rgb, f"Selected {len(state.protection_points)} points\nCoordinates: {state.protection_points}"
def reset_points():
"""Reset protection points"""
state.protection_points = []
if state.current_image is not None:
# Convert original image to RGB for display
display_img_rgb = cv2.cvtColor(state.current_image.copy(), cv2.COLOR_BGR2RGB)
return display_img_rgb, "Points reset"
return None, "Points reset"
def detect_rail_segments(image):
"""Detect rail segments using the API"""
try:
# Log original image dimensions
width, height = image.size
print(f"Detecting rail segments on image with dimensions: {width}x{height}")
files = {"file": image_to_bytes(image)}
response = requests.post(
f"{API_URL}/detect/rail-segment",
files=files,
timeout=60
)
if response.status_code == 200:
result = response.json()
if "segments" in result:
return result["segments"], base64_to_image(result["image_base64"])
else:
return [], None
else:
print(f"API error: {response.status_code} - Image size was {width}x{height}")
return [], None
except Exception as e:
print(f"Error in detect_rail_segments: {str(e)}")
return [], None
def extract_protection_area(first_frame):
"""Extract and cache protection area points using rail segment detection"""
try:
# Log original frame dimensions
height, width = first_frame.shape[:2]
print(f"Extracting protection area from frame with dimensions: {width}x{height}")
# Convert frame to PIL Image without resizing
first_frame_pil = Image.fromarray(cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB))
# Verify PIL image dimensions
pil_width, pil_height = first_frame_pil.size
print(f"PIL Image dimensions before API call: {pil_width}x{pil_height}")
# Detect rail segments
segments, segment_img = detect_rail_segments(first_frame_pil)
if segments and len(segments) > 0:
# Verify segment image dimensions
if segment_img is not None:
seg_height, seg_width = segment_img.shape[:2]
print(f"Received segment image dimensions: {seg_width}x{seg_height}")
# Only resize if dimensions don't match
if (seg_width, seg_height) != (width, height):
print(f"Resizing segment image from {seg_width}x{seg_height} to {width}x{height}")
segment_img = cv2.resize(segment_img, (width, height), interpolation=cv2.INTER_LANCZOS4)
# Store segments and image
state.detected_segments = segments
state.segment_image = segment_img
# Create segment choices with more detailed information
segment_choices = []
for i, segment in enumerate(segments):
# Extract mask dimensions for verification
mask_points = segment.get('mask', [])
if mask_points:
mask_x = [p[0] for p in mask_points]
mask_y = [p[1] for p in mask_points]
mask_width = max(mask_x) - min(mask_x)
mask_height = max(mask_y) - min(mask_y)
print(f"Segment {i+1} mask dimensions: {mask_width}x{mask_height}")
choice_text = f"Segment {i+1} (Confidence: {segment['confidence']:.2f})"
segment_choices.append(choice_text)
state.selected_segments = segment_choices # Select all segments by default
# Use the first segment's mask as protection area
segment = segments[0]
if 'mask' in segment and segment['mask']:
mask_points = segment['mask']
# Convert to list of [x,y] points and ensure integer values
mask_points = [[int(float(x)), int(float(y))] for x, y in mask_points]
if len(mask_points) >= 3: # Need at least 3 points for a valid polygon
state.cached_protection_area = mask_points
# Convert segment image to RGB for display without resizing
if segment_img is not None:
display_img = cv2.cvtColor(segment_img, cv2.COLOR_BGR2RGB)
return True, "Protection area extracted successfully", display_img
return False, "Invalid mask points in segment", None
return False, "No valid rail segments detected", None
except Exception as e:
print(f"Error in extract_protection_area: {str(e)}")
return False, f"Error extracting protection area: {str(e)}", None
def get_segment_index(choice_text):
"""Extract segment index from choice text"""
try:
# Extract index from "Segment X (Confidence: Y)" format
return int(choice_text.split()[1]) - 1
except:
return -1
def update_object_tracking(objects_in_area):
"""Update object tracking with new detections"""
try:
current_tracked = set() # Keep track of objects seen in this frame
current_warnings = [] # Collect warnings for this frame
# Match new detections with existing tracked objects
for obj in objects_in_area:
try:
if 'bbox' not in obj or 'class' not in obj:
continue
bbox = obj['bbox']
obj_class = obj['class']
is_in_red_zone = obj.get('in_protection_area', False)
matched = False
best_match_id = None
best_similarity = 0.0
# Try to match with existing tracked objects using similarity method
for obj_id, tracked in state.tracked_objects.items():
if tracked.class_name == obj_class:
# Check if object was seen recently (within time window)
if state.frame_count - tracked.last_seen <= state.time_window:
similarity = tracked.get_similarity_with(bbox)
# Use the best match above threshold
if similarity > state.similarity_threshold and similarity > best_similarity:
best_similarity = similarity
best_match_id = obj_id
# If good match found, update existing object
if best_match_id is not None:
tracked = state.tracked_objects[best_match_id]
tracked.add_detection(bbox)
tracked.last_seen = state.frame_count
current_tracked.add(best_match_id)
matched = True
# Check red zone status and warnings
warning_triggered = tracked.update_red_zone_status(is_in_red_zone, state.frame_count)
if warning_triggered:
warning_msg = f"⚠️ WARNING: {tracked.class_name} (ID: {tracked.id}) has been in red zone for {tracked.frames_in_red_zone} frames!"
current_warnings.append(warning_msg)
state.red_zone_warnings.append({
'frame': state.frame_count,
'object_id': tracked.id,
'class': tracked.class_name,
'frames_in_zone': tracked.frames_in_red_zone,
'message': warning_msg
})
# Check if object should be counted (only count objects that actually move through the zone)
if not tracked.counted and tracked.has_movement() and is_in_red_zone:
# Additional check: object should have been tracked for at least a few frames
if len(tracked.trajectory) >= 3:
tracked.counted = True
state.red_zone_passed_objects[obj_class] += 1
# If no match found, create new tracked object
if not matched:
new_obj = TrackedObject(state.next_obj_id, obj_class, bbox)
new_obj.last_seen = state.frame_count
new_obj.first_seen = state.frame_count
state.tracked_objects[state.next_obj_id] = new_obj
current_tracked.add(state.next_obj_id)
state.next_obj_id += 1
# Check red zone status for new object
new_obj.update_red_zone_status(is_in_red_zone, state.frame_count)
except Exception as e:
continue
# Update objects not seen in current frame
for obj_id, tracked in state.tracked_objects.items():
if obj_id not in current_tracked:
# Object not seen in current frame, update red zone status
tracked.update_red_zone_status(False, state.frame_count)
# Remove objects that haven't been seen for a while
if state.frame_count > state.time_window:
to_remove = []
for obj_id, tracked in state.tracked_objects.items():
if state.frame_count - tracked.last_seen > state.time_window * 2: # Remove after 2x time window
to_remove.append(obj_id)
for obj_id in to_remove:
del state.tracked_objects[obj_id]
# Store current warnings
if current_warnings:
print(f"Frame {state.frame_count} Warnings: {current_warnings}")
except Exception as e:
print(f"Error in update_object_tracking: {str(e)}")
def get_red_zone_summary():
"""Generate summary of objects that passed through red zone"""
summary = []
if state.red_zone_passed_objects:
summary.append("πŸ”΄ RED ZONE PASSAGE SUMMARY:")
total_objects = sum(state.red_zone_passed_objects.values())
summary.append(f"Total objects passed: {total_objects}")
for obj_class, count in sorted(state.red_zone_passed_objects.items()):
summary.append(f" β€’ {obj_class}: {count}")
# Add current objects in red zone
current_in_zone = []
for obj_id, tracked in state.tracked_objects.items():
if tracked.frames_in_red_zone > 0:
current_in_zone.append(f"{tracked.class_name} (ID: {tracked.id}, {tracked.frames_in_red_zone} frames)")
if current_in_zone:
summary.append("\n🚨 CURRENTLY IN RED ZONE:")
for obj_info in current_in_zone:
summary.append(f" β€’ {obj_info}")
# Add recent warnings
recent_warnings = [w for w in state.red_zone_warnings if state.frame_count - w['frame'] <= 5]
if recent_warnings:
summary.append("\n⚠️ RECENT WARNINGS:")
for warning in recent_warnings[-3:]: # Show last 3 warnings
summary.append(f" β€’ Frame {warning['frame']}: {warning['message']}")
return "\n".join(summary) if summary else "No objects detected in red zone yet."
def process_frame(frame, confidence):
"""Process a video frame using cached protection area"""
try:
protection_area = []
if state.selected_segments and state.detected_segments:
for choice in state.selected_segments:
idx = get_segment_index(choice)
if 0 <= idx < len(state.detected_segments):
segment = state.detected_segments[idx]
if 'mask' in segment and segment['mask']:
protection_area = segment['mask']
break
elif len(state.protection_points) >= 3:
protection_area = state.protection_points
if not protection_area:
return None, "Protection area not set. Please extract protection area first."
# Ensure frame is valid
if frame is None or frame.size == 0:
return None, "Invalid frame"
success, buffer = cv2.imencode('.png', frame)
if not success:
return None, "Failed to encode frame"
files = {
"file": ("frame.png", buffer.tobytes(), "image/png")
}
protection_area_json = json.dumps(protection_area)
data = {
"protection_area": protection_area_json,
"confidence_threshold": str(confidence)
}
if state.previous_detections:
data["previous_detections"] = json.dumps(state.previous_detections)
try:
response = requests.post(
f"{API_URL}/detect/objects-and-redlight",
files=files,
data=data,
timeout=60
)
if response.status_code == 200:
result = response.json()
if not result.get("success"):
return None, f"API Error: {result.get('detail', 'Unknown error')}"
result_data = result.get("result", {})
if not result_data:
return None, "No result data received"
red_light_info = result_data.get("red_light", {})
red_light_detected = red_light_info.get("detected", False)
red_light_prob = red_light_info.get("probability", 0)
img_base64 = result_data.get("image_base64")
if not img_base64:
return None, "No image data received from API"
try:
if ',' in img_base64:
img_base64 = img_base64.split(',')[1]
img_data = base64.b64decode(img_base64)
nparr = np.frombuffer(img_data, np.uint8)
processed_img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
if processed_img is None or processed_img.size == 0:
return None, "Failed to decode image from API response"
objects_in_area = [obj for obj in result_data.get("objects", [])
if obj.get("in_protection_area", False) and
'bbox' in obj and 'class' in obj]
# Update object tracking
state.frame_count += 1
update_object_tracking(objects_in_area)
# Cache detections for next frame
state.previous_detections = objects_in_area
processed_img_rgb = cv2.cvtColor(processed_img, cv2.COLOR_BGR2RGB)
status = []
status.append(f"Red Light: {'YES' if red_light_detected else 'NO'} ({red_light_prob:.2f})")
# Add enhanced red zone summary
red_zone_summary = get_red_zone_summary()
status.append(f"\n{red_zone_summary}")
if objects_in_area:
status.append("\nπŸ“Š CURRENT FRAME DETECTIONS:")
for obj in objects_in_area:
status.append(f" β€’ {obj['class']} (confidence: {obj['confidence']:.2f})")
# Add tracking statistics
active_objects = len([obj for obj in state.tracked_objects.values()
if state.frame_count - obj.last_seen <= 3])
status.append(f"\nπŸ“ˆ TRACKING STATS:")
status.append(f" β€’ Active tracked objects: {active_objects}")
status.append(f" β€’ Frame: {state.frame_count}")
status.append(f" β€’ Time window: {state.time_window} frames")
status.append(f" β€’ Similarity threshold: {state.similarity_threshold:.2f}")
return processed_img_rgb, "\n".join(status)
except Exception as e:
return None, f"Error processing detection results: {str(e)}"
else:
error_detail = f"API Error: {response.status_code}"
try:
error_json = response.json()
if 'detail' in error_json:
error_detail += f" - {error_json['detail']}"
except:
error_detail += f" - {response.text}"
return None, error_detail
except requests.exceptions.Timeout:
return None, "API request timed out"
except requests.exceptions.ConnectionError:
return None, "Could not connect to API server"
except Exception as e:
return None, f"API request failed: {str(e)}"
except Exception as e:
return None, f"Error processing frame: {str(e)}"
def process_video(video, confidence=DEFAULT_CONFIDENCE, target_fps=1):
"""Stream processed frames in real-time using cached protection area"""
detection_results = []
cap = cv2.VideoCapture(video)
if not cap.isOpened():
yield None, "Error: Could not open video file"
return
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS)
frame_interval = max(1, int(fps / target_fps))
frame_number = 0
try:
while True:
ret, frame = cap.read()
if not ret:
break
frame_number += 1
if frame_number % frame_interval != 0:
continue
# Process frame and get results
processed_frame, result = process_frame(frame, confidence)
if processed_frame is not None:
# Frame is already in RGB format from process_frame
current_status = f"Processing frame {frame_number}/{total_frames}\n{result}"
yield processed_frame, current_status
else:
current_status = f"Frame {frame_number}: {result}"
yield None, current_status
# Release resources
cap.release()
# Generate final summary
final_summary = generate_final_summary()
yield None, final_summary
except Exception as e:
yield None, f"Error processing video: {str(e)}"
finally:
cap.release()
def generate_final_summary():
"""Generate comprehensive final summary of video processing"""
summary_lines = []
summary_lines.append("🎬 VIDEO PROCESSING COMPLETE")
summary_lines.append("=" * 50)
# Processing statistics
summary_lines.append(f"πŸ“Š PROCESSING STATISTICS:")
summary_lines.append(f" β€’ Total frames processed: {state.frame_count}")
summary_lines.append(f" β€’ Time window used: {state.time_window} frames")
summary_lines.append(f" β€’ Similarity threshold: {state.similarity_threshold:.2f}")
# Red zone passage summary
if state.red_zone_passed_objects:
summary_lines.append(f"\nπŸ”΄ RED ZONE PASSAGE SUMMARY:")
total_passed = sum(state.red_zone_passed_objects.values())
summary_lines.append(f" β€’ Total objects passed through red zone: {total_passed}")
for obj_class, count in sorted(state.red_zone_passed_objects.items()):
summary_lines.append(f" - {obj_class}: {count}")
else:
summary_lines.append(f"\nπŸ”΄ RED ZONE PASSAGE SUMMARY:")
summary_lines.append(f" β€’ No objects detected passing through red zone")
# Warning summary
if state.red_zone_warnings:
summary_lines.append(f"\n⚠️ WARNING SUMMARY:")
summary_lines.append(f" β€’ Total warnings generated: {len(state.red_zone_warnings)}")
# Group warnings by object class
warning_by_class = defaultdict(int)
for warning in state.red_zone_warnings:
warning_by_class[warning['class']] += 1
for obj_class, count in sorted(warning_by_class.items()):
summary_lines.append(f" - {obj_class}: {count} warnings")
# Show last few warnings
if len(state.red_zone_warnings) > 0:
summary_lines.append(f"\n πŸ“‹ Recent warnings:")
for warning in state.red_zone_warnings[-5:]: # Last 5 warnings
summary_lines.append(f" - Frame {warning['frame']}: {warning['class']} (ID: {warning['object_id']}) - {warning['frames_in_zone']} frames in zone")
else:
summary_lines.append(f"\n⚠️ WARNING SUMMARY:")
summary_lines.append(f" β€’ No warnings generated (no objects stayed in red zone > 3 frames)")
# Active tracking summary
total_tracked = len(state.tracked_objects)
if total_tracked > 0:
summary_lines.append(f"\nπŸ“ˆ OBJECT TRACKING SUMMARY:")
summary_lines.append(f" β€’ Total unique objects tracked: {total_tracked}")
# Group by class
objects_by_class = defaultdict(int)
for obj in state.tracked_objects.values():
objects_by_class[obj.class_name] += 1
for obj_class, count in sorted(objects_by_class.items()):
summary_lines.append(f" - {obj_class}: {count}")
summary_lines.append("\nβœ… Processing completed successfully!")
return "\n".join(summary_lines)
def extract_area_from_video(video):
if video is None:
return None, "Please upload a video", gr.update(choices=[], value=[], visible=False)
cap = cv2.VideoCapture(video)
ret, frame = cap.read()
cap.release()
if not ret:
return None, "Could not read video frame", gr.update(choices=[], value=[], visible=False)
success, message, segment_img = extract_protection_area(frame)
if success and segment_img is not None:
# Convert segment image to RGB for display
segment_img_rgb = cv2.cvtColor(segment_img, cv2.COLOR_BGR2RGB)
# Create segment choices
segment_choices = [f"Segment {i+1} (Confidence: {segment['confidence']:.2f})"
for i, segment in enumerate(state.detected_segments)]
return segment_img_rgb, message, gr.update(choices=segment_choices, value=segment_choices, visible=True)
return None, message, gr.update(choices=[], value=[], visible=False)
def update_selected_segments(selected):
if selected is None:
selected = []
state.selected_segments = selected
return gr.update()
def process_video_wrapper(video, confidence=DEFAULT_CONFIDENCE, target_fps=1, time_window=10, similarity_threshold=0.6):
"""Wrapper around process_video to handle full-size video processing"""
if video is None:
yield None, "Please upload a video"
return
# Reset tracking state and update parameters
state.reset_tracking()
state.time_window = time_window
state.similarity_threshold = similarity_threshold
protection_area = []
if state.selected_segments and state.detected_segments:
for choice in state.selected_segments:
idx = get_segment_index(choice)
if 0 <= idx < len(state.detected_segments):
segment = state.detected_segments[idx]
if 'mask' in segment and segment['mask']:
protection_area = segment['mask']
break
elif len(state.protection_points) >= 3:
protection_area = state.protection_points
if not protection_area:
yield None, "Please extract protection area first"
return
try:
yield None, f"πŸš€ Starting video processing...\nβš™οΈ Time window: {time_window} frames\nβš™οΈ Similarity threshold: {similarity_threshold:.2f}"
for frame, status in process_video(video, confidence, target_fps):
yield frame, status
except Exception as e:
yield None, f"Error processing video: {str(e)}"
# Update the Gradio interface
with gr.Blocks(title="Enhanced Rail Traffic Monitor") as demo:
gr.Markdown("""
# Enhanced Rail Traffic Monitoring System
## Features:
- **Smart Object Tracking**: Uses similarity method to track objects across frames
- **Red Zone Monitoring**: Counts objects passing through the red zone
- **Warning System**: Alerts when objects stay in red zone for more than 3 frames
- **Configurable Parameters**: Adjust time window and similarity threshold
## Setup Instructions:
**Method 1 (Manual Protection Area):**
1. Click 4 points on the image to define protection area
2. Click "Reset Points" to start over
**Method 2 (Automatic Detection):**
1. Click "Extract Protection Area" to automatically detect rail segments
**Processing:**
3. Adjust detection confidence, processing frame rate, time window, and similarity threshold
4. Click "Process Video" to analyze
The system will show real-time results including:
- Objects currently in red zone
- Total count of objects that passed through
- Warnings for objects staying too long in red zone
- Tracking statistics
""")
with gr.Row():
with gr.Column():
video_input = gr.Video(
label="Input Video"
)
with gr.Row():
confidence = gr.Slider(
minimum=0.0,
maximum=1.0,
value=DEFAULT_CONFIDENCE,
label="Detection Confidence Threshold",
info="Minimum confidence for object detection"
)
fps_slider = gr.Slider(
minimum=1,
maximum=30,
value=1,
step=1,
label="Processing Frame Rate (FPS)",
info="Frames per second to process"
)
with gr.Row():
time_window_slider = gr.Slider(
minimum=5,
maximum=50,
value=10,
step=1,
label="Time Window (frames)",
info="Number of frames to consider for object similarity"
)
similarity_threshold_slider = gr.Slider(
minimum=0.1,
maximum=0.9,
value=0.6,
step=0.05,
label="Similarity Threshold",
info="Threshold for considering objects as the same (higher = stricter)"
)
with gr.Column():
preview_image = gr.Image(
label="Click to Select Protection Area (Original Size)",
interactive=True,
show_label=True
)
# Add segment selection dropdown
segment_dropdown = gr.Dropdown(
label="Selected Segments",
choices=[],
multiselect=True,
interactive=True,
visible=False,
value=[]
)
with gr.Row():
reset_btn = gr.Button("Reset Points")
extract_btn = gr.Button("Extract Protection Area")
process_btn = gr.Button("πŸš€ Process Video")
with gr.Row():
video_output = gr.Image(
label="Live Processing Output",
streaming=True,
interactive=False,
show_label=True,
container=True,
show_download_button=True
)
text_output = gr.Textbox(
label="Detection Results & Red Zone Summary",
lines=15,
max_lines=20,
show_copy_button=True
)
# Handle video upload to populate preview
video_input.change(
fn=update_preview,
inputs=[video_input],
outputs=[preview_image, segment_dropdown]
)
extract_btn.click(
fn=extract_area_from_video,
inputs=[video_input],
outputs=[preview_image, text_output, segment_dropdown]
)
segment_dropdown.change(
fn=update_selected_segments,
inputs=[segment_dropdown],
outputs=[segment_dropdown]
)
process_btn.click(
fn=process_video_wrapper,
inputs=[video_input, confidence, fps_slider, time_window_slider, similarity_threshold_slider],
outputs=[video_output, text_output]
)
# Add click event handler
preview_image.select(
fn=handle_image_click,
inputs=[preview_image],
outputs=[preview_image, text_output]
)
# Add reset button handler
reset_btn.click(
fn=reset_points,
inputs=[],
outputs=[preview_image, text_output]
)
if __name__ == "__main__":
demo.queue().launch()