8aad / app.py
Somalitts's picture
Update app.py
25352e2 verified
import gradio as gr
import torch
import torchaudio
import re
import os
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
from speechbrain.pretrained import EncoderClassifier
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load models
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
model = SpeechT5ForTextToSpeech.from_pretrained("Somalitts/8aad").to(device)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
speaker_model = EncoderClassifier.from_hparams(
source="speechbrain/spkrec-xvect-voxceleb",
run_opts={"device": device},
savedir="./spk_model"
)
# Speaker embedding
EMB_PATH = "speaker_embedding.pt"
if os.path.exists(EMB_PATH):
speaker_embedding = torch.load(EMB_PATH).to(device)
else:
audio, sr = torchaudio.load("1.wav")
audio = torchaudio.functional.resample(audio, sr, 16000).mean(dim=0).unsqueeze(0).to(device)
with torch.no_grad():
emb = speaker_model.encode_batch(audio)
emb = torch.nn.functional.normalize(emb, dim=2).squeeze()
torch.save(emb.cpu(), EMB_PATH)
speaker_embedding = emb
# Number conversion (Somali)
number_words = {
0: "eber", 1: "koow", 2: "labo", 3: "seddex", 4: "afar", 5: "shan",
6: "lix", 7: "todobo", 8: "sideed", 9: "sagaal", 10: "toban",
11: "toban iyo koow", 12: "toban iyo labo", 13: "toban iyo seddex",
14: "toban iyo afar", 15: "toban iyo shan", 16: "toban iyo lix",
17: "toban iyo todobo", 18: "toban iyo sideed", 19: "toban iyo sagaal",
20: "labaatan", 30: "sodon", 40: "afartan", 50: "konton",
60: "lixdan", 70: "todobaatan", 80: "sideetan", 90: "sagaashan",
100: "boqol", 1000: "kun",
}
def number_to_words(number):
if number < 20:
return number_words[number]
elif number < 100:
tens, unit = divmod(number, 10)
return number_words[tens * 10] + (" " + number_words[unit] if unit else "")
elif number < 1000:
hundreds, remainder = divmod(number, 100)
return (number_words[hundreds] + " boqol" if hundreds > 1 else "BOQOL") + (" " + number_to_words(remainder) if remainder else "")
elif number < 1000000:
thousands, remainder = divmod(number, 1000)
return (number_to_words(thousands) + " kun" if thousands > 1 else "KUN") + (" " + number_to_words(remainder) if remainder else "")
elif number < 1000000000:
millions, remainder = divmod(number, 1000000)
return number_to_words(millions) + " malyan" + (" " + number_to_words(remainder) if remainder else "")
elif number < 1000000000000:
billions, remainder = divmod(number, 1000000000)
return number_to_words(billions) + " milyaar" + (" " + number_to_words(remainder) if remainder else "")
else:
return str(number)
def replace_numbers_with_words(text):
def replace(match):
number = int(match.group())
return number_to_words(number)
return re.sub(r'\b\d+\b', replace, text)
def normalize_text(text):
text = text.lower()
text = replace_numbers_with_words(text)
text = re.sub(r'[^\w\s]', '', text)
return text
# TTS function
def text_to_speech(text):
text = normalize_text(text)
inputs = processor(text=text, return_tensors="pt").to(device)
with torch.no_grad():
speech = model.generate_speech(inputs["input_ids"], speaker_embedding.unsqueeze(0), vocoder=vocoder)
return (16000, speech.cpu().numpy())
# Gradio Interface
iface = gr.Interface(
fn=text_to_speech,
inputs=gr.Textbox(label="Geli qoraalka af-soomaali"),
outputs=gr.Audio(label="Codka la abuuray", type="numpy"),
title="Somali TTS",
description="TTS Soomaaliyeed oo la adeegsaday cod gaar ah (11.wav)"
)
iface.launch()