Combined_Model / app.py
Sleepyriizi's picture
Update app.py
934e594 verified
"""
Unified AI-Image & Deepfake Detector
===================================
β€’ Combines a generic AI-image detector (Swin-V2 + SuSy) *and*
a deepfake-specialist face detector (Inception-ResNet V1).
β€’ Always runs both experts β†’ fuses their calibrated scores.
β€’ Works on images **and** short videos (≀ 30 s).
Add/keep in requirements.txt (versions pinned earlier):
torch torchvision facenet-pytorch transformers torchcam captum timm
mediapipe opencv-python-headless pillow scikit-image matplotlib
gradio fpdf pandas numpy absl-py ttach
"""
# ───────────────────── bootstrap for extra wheels ──────────────────────
import os, uuid, warnings, math, tempfile
from pathlib import Path
from typing import List, Tuple
warnings.filterwarnings("ignore")
def _ensure_deps():
try:
import mediapipe, fpdf # noqa: F401
except ImportError:
os.system("pip install --quiet --upgrade mediapipe fpdf")
_ensure_deps()
# ─────────────────────────────── imports ───────────────────────────────
import cv2
import gradio as gr
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
from fpdf import FPDF
import mediapipe as mp
from facenet_pytorch import InceptionResnetV1, MTCNN
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from torchvision import transforms
from transformers import AutoImageProcessor, AutoModelForImageClassification
from torchcam.methods import GradCAM as TCGradCAM
from captum.attr import Saliency
from skimage.feature import graycomatrix, graycoprops
import matplotlib.pyplot as plt
import pandas as pd
import spaces
# ───────────────────────── runtime / models ────────────────────────────
plt.set_loglevel("ERROR")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Deep-fake specialist
_face_det = MTCNN(select_largest=False, post_process=False, device=device).eval().to(device)
_df_model = InceptionResnetV1(pretrained="vggface2", classify=True, num_classes=1, device=device)
_df_model.load_state_dict(torch.load("resnet_inception.pth", map_location="cpu")["model_state_dict"])
_df_model.to(device).eval()
_df_cam = GradCAM(_df_model, target_layers=[_df_model.block8.branch1[-1]],
use_cuda=device.type == "cuda")
# Helper: robust layer fetch
def _get_layer(model, name: str):
mods = dict(model.named_modules())
return mods.get(name) or next(m for n, m in mods.items() if n.endswith(name))
# Binary AI-image detector (Swin-V2)
BIN_ID = "haywoodsloan/ai-image-detector-deploy"
_bin_proc = AutoImageProcessor.from_pretrained(BIN_ID)
_bin_mod = AutoModelForImageClassification.from_pretrained(BIN_ID).to(device).eval()
_CAM_LAYER_BIN = "encoder.layers.3.blocks.1.layernorm_after"
_bin_cam = TCGradCAM(_bin_mod, target_layer=_get_layer(_bin_mod, _CAM_LAYER_BIN))
# Generator classifier (SuSy β€” ScriptModule β†’ Captum only)
_susy_mod = torch.jit.load("SuSy.pt").to(device).eval()
_GEN_CLASSES = ["Stable Diffusion 1.x", "DALLΒ·E 3",
"MJ V5/V6", "Stable Diffusion XL", "MJ V1/V2"]
_PATCH, _TOP = 224, 5
_to_tensor = transforms.ToTensor()
_to_gray = transforms.Compose([transforms.PILToTensor(), transforms.Grayscale()])
# ─────────────── calibration placeholders (optional tune) ──────────────
_calib_df_slope, _calib_df_inter = 1.0, 0.0
_calib_ai_slope, _calib_ai_inter = 1.0, 0.0
# def _calibrate_df(p: float) -> float:
# def _calibrate_ai(p: float) -> float:
# return 1 / (1 + math.exp(-(_calib_ai_slope * (p + _calib_ai_inter))))
def _calibrate_df(p: float) -> float: # keep raw score for now
return p
def _calibrate_ai(p: float) -> float:
return p
# ───────────────────────────── misc helpers ────────────────────────────
UNCERTAIN_GAP = 0.10
MIN_FRAMES, MAX_SAMPLES = 4, 20
def _extract_landmarks(rgb: np.ndarray) -> Tuple[np.ndarray, np.ndarray | None]:
mesh = mp.solutions.face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1)
res = mesh.process(rgb); mesh.close()
if not res.multi_face_landmarks:
return rgb, None
h, w, _ = rgb.shape
out = rgb.copy()
for lm in res.multi_face_landmarks[0].landmark:
cx, cy = int(lm.x * w), int(lm.y * h)
cv2.circle(out, (cx, cy), 1, (0, 255, 0), -1)
return out, None
def _overlay_cam(cam, base):
# ---- NEW: make sure 'cam' is a NumPy array on CPU ----
if torch.is_tensor(cam): # covers torchcam output
cam = cam.detach().cpu().numpy()
# ------------------------------------------------------
cam = (cam - cam.min()) / (cam.max() - cam.min() + 1e-6)
heat = Image.fromarray(
(plt.cm.jet(cam)[:, :, :3] * 255).astype(np.uint8)
).resize((base.shape[1], base.shape[0]), Image.BICUBIC)
return Image.blend(
Image.fromarray(base).convert("RGBA"),
heat.convert("RGBA"),
alpha=0.45,
)
def _render_pdf(title: str, verdict: str, conf: dict, pages: List[Image.Image]) -> str:
out = Path(f"/tmp/report_{uuid.uuid4().hex}.pdf")
pdf = FPDF(); pdf.set_auto_page_break(True, 15); pdf.add_page()
pdf.set_font("Helvetica", size=14); pdf.cell(0, 10, title, ln=True, align="C")
pdf.ln(4); pdf.set_font("Helvetica", size=12)
pdf.multi_cell(0, 6, f"Verdict: {verdict}\n"
f"Confidence -> Real {conf['real']:.3f} Fake {conf['fake']:.3f}")
for idx, img in enumerate(pages):
pdf.ln(4); pdf.set_font("Helvetica", size=11)
pdf.cell(0, 6, f"Figure {idx+1}", ln=True)
tmp = Path(tempfile.mktemp(suffix=".jpg"))
img.convert("RGB").save(tmp, format="JPEG") # ← add .convert("RGB")
pdf.image(str(tmp), x=10, w=90)
tmp.unlink(missing_ok=True)
pdf.output(out)
return str(out)
# ────────────────────────── SuSy helpers (saliency) ────────────────────
def _susy_cam(tensor: torch.Tensor, class_idx: int) -> np.ndarray:
sal = Saliency(_susy_mod)
grad = sal.attribute(tensor, target=class_idx).abs().mean(1, keepdim=True)
return grad.squeeze().detach().cpu().numpy()
@spaces.GPU
def _susy_predict(img: Image.Image):
w, h = img.size
npx, npy = max(1, w // _PATCH), max(1, h // _PATCH)
patches = np.zeros((npx * npy, _PATCH, _PATCH, 3), dtype=np.uint8)
for i in range(npx):
for j in range(npy):
x, y = i * _PATCH, j * _PATCH
patches[i*npy + j] = np.array(img.crop((x, y, x+_PATCH, y+_PATCH))
.resize((_PATCH, _PATCH)))
contrasts = []
for p in patches:
g = _to_gray(Image.fromarray(p)).squeeze(0).numpy()
glcm = graycomatrix(g, [5], [0], 256, symmetric=True, normed=True)
contrasts.append(graycoprops(glcm, "contrast")[0, 0])
idx = np.argsort(contrasts)[::-1][:_TOP]
tens = torch.from_numpy(patches[idx].transpose(0, 3, 1, 2)).float() / 255.0
with torch.no_grad():
probs = _susy_mod(tens.to(device)).softmax(-1).mean(0).cpu().numpy()[1:]
return dict(zip(_GEN_CLASSES, probs))
# ───────────────────────────── fusion math ─────────────────────────────
def _fuse(p_ai: float, p_df: float) -> float:
return 1 - (1 - p_ai) * (1 - p_df)
def _verdict(p: float) -> str:
return "uncertain" if abs(p - 0.5) <= UNCERTAIN_GAP else ("fake" if p > 0.5 else "real")
# ─────────────────────────── IMAGE PIPELINE ────────────────────────────
@spaces.GPU
def _predict_image(pil: Image.Image):
gallery: List[Image.Image] = []
# Deep-fake path
try:
face = _face_det(pil)
except Exception:
face = None
if face is not None:
ft = F.interpolate(face.unsqueeze(0), (256, 256), mode="bilinear",
align_corners=False).float() / 255.0
p_df_raw = torch.sigmoid(_df_model(ft.to(device))).item()
p_df = _calibrate_df(p_df_raw)
crop_np = (ft.squeeze(0).permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8)
cam_df = _df_cam(ft, [ClassifierOutputTarget(0)])[0]
gallery.append(_overlay_cam(cam_df, crop_np))
gallery.append(Image.fromarray(_extract_landmarks(
cv2.cvtColor(np.array(pil), cv2.COLOR_BGR2RGB))[0]))
else:
p_df = 0.5
# Binary AI model
inp_bin = _bin_proc(images=pil, return_tensors="pt").to(device)
logits = _bin_mod(**inp_bin).logits.softmax(-1)[0]
p_ai_raw = logits[0].item()
p_ai = _calibrate_ai(p_ai_raw)
winner_idx = 0 if p_ai_raw >= logits[1].item() else 1
inp_bin_h = {k: v.clone().detach().requires_grad_(True) for k, v in inp_bin.items()}
cam_bin = _bin_cam(winner_idx, scores=_bin_mod(**inp_bin_h).logits)[0]
gallery.append(_overlay_cam(cam_bin, np.array(pil)))
# Generator breakdown (SuSy) if AI
bar_plot = gr.update(visible=False)
if p_ai_raw > logits[1].item():
gen_probs = _susy_predict(pil)
bar_plot = gr.update(value=pd.DataFrame(gen_probs.items(), columns=["class", "prob"]),
visible=True)
susy_in = _to_tensor(pil.resize((224, 224))).unsqueeze(0).to(device)
g_idx = _susy_mod(susy_in)[0, 1:].argmax().item() + 1
cam_susy = _susy_cam(susy_in, g_idx)
gallery.append(_overlay_cam(cam_susy, np.array(pil)))
# Fusion
p_final = _fuse(p_ai, p_df)
verdict = _verdict(p_final)
conf = {"real": round(1-p_final, 4), "fake": round(p_final, 4)}
pdf = _render_pdf("Unified Detector", verdict, conf, gallery[:3])
return verdict, conf, gallery, bar_plot, pdf
# ─────────────────────────── VIDEO PIPELINE ────────────────────────────
def _sample_idx(n): # max 20 evenly spaced
return list(range(n)) if n <= MAX_SAMPLES else np.linspace(0, n-1, MAX_SAMPLES, dtype=int)
@spaces.GPU
def _predict_video(path: str):
cap = cv2.VideoCapture(path); total = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) or 1
probs, frames = [], []
for i in _sample_idx(total):
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
ok, frm = cap.read()
if not ok:
continue
pil = Image.fromarray(cv2.cvtColor(frm, cv2.COLOR_BGR2RGB))
verdict, conf, _, _, _ = _predict_image(pil)
probs.append(conf["fake"])
if len(frames) < MIN_FRAMES:
frames.append(Image.fromarray(frm))
cap.release()
if not probs:
blank = Image.new("RGB", (256, 256))
return "No frames analysed", {"real": 0, "fake": 0}, [blank]
p_final = float(np.mean(probs))
return _verdict(p_final), {"real": round(1-p_final, 4), "fake": round(p_final, 4)}, frames
# ───────────────────────────────── UI ──────────────────────────────────
_css = "footer{visibility:hidden!important}.logo,#logo{display:none!important}"
with gr.Blocks(css=_css, title="Unified AI-Fake & Deepfake Detector") as demo:
gr.Markdown("""
## Unified AI-Fake & Deepfake Detector
Upload an **image** or a short **video**.
The app fuses two complementary models, then shows heat-maps & a PDF report.
""")
with gr.Tab("Image"):
with gr.Row():
with gr.Column(scale=1):
img_in = gr.Image(label="Upload image", type="pil")
btn_i = gr.Button("Analyze")
with gr.Column(scale=2):
txt_v = gr.Textbox(label="Verdict", interactive=False)
lbl_c = gr.Label(label="Confidence")
gal = gr.Gallery(label="Explanations", columns=3, height=320)
bar = gr.BarPlot(x="class", y="prob", title="Likely generator",
y_label="probability", visible=False)
pdf_f = gr.File(label="Download PDF report")
btn_i.click(_predict_image, img_in, [txt_v, lbl_c, gal, bar, pdf_f])
with gr.Tab("Video"):
with gr.Row():
with gr.Column(scale=1):
vid_in = gr.Video(label="Upload MP4/AVI", format="mp4")
btn_v = gr.Button("Analyze")
with gr.Column(scale=2):
txt_vv = gr.Textbox(label="Verdict", interactive=False)
lbl_cv = gr.Label(label="Confidence")
gal_v = gr.Gallery(label="Sample frames", columns=4, height=240)
btn_v.click(_predict_video, vid_in, [txt_vv, lbl_cv, gal_v])
demo.launch(share=True, show_api=False)