Spaces:
Running
on
L40S
Running
on
L40S
| import torch | |
| from collections import OrderedDict | |
| import os | |
| import torch | |
| import torch.nn as nn | |
| import cv2 | |
| import numpy | |
| import numpy as np | |
| import math | |
| import time | |
| from scipy.ndimage.filters import gaussian_filter | |
| import matplotlib.pyplot as plt | |
| import matplotlib | |
| import torch | |
| from torchvision import transforms | |
| def transfer(model, model_weights): | |
| transfered_model_weights = {} | |
| for weights_name in model.state_dict().keys(): | |
| transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])] | |
| return transfered_model_weights | |
| def padRightDownCorner(img, stride, padValue): | |
| h = img.shape[0] | |
| w = img.shape[1] | |
| pad = 4 * [None] | |
| pad[0] = 0 # up | |
| pad[1] = 0 # left | |
| pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down | |
| pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right | |
| img_padded = img | |
| pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1)) | |
| img_padded = np.concatenate((pad_up, img_padded), axis=0) | |
| pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1)) | |
| img_padded = np.concatenate((pad_left, img_padded), axis=1) | |
| pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1)) | |
| img_padded = np.concatenate((img_padded, pad_down), axis=0) | |
| pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1)) | |
| img_padded = np.concatenate((img_padded, pad_right), axis=1) | |
| return img_padded, pad | |
| def make_layers(block, no_relu_layers): | |
| layers = [] | |
| for layer_name, v in block.items(): | |
| if 'pool' in layer_name: | |
| layer = nn.MaxPool2d(kernel_size=v[0], stride=v[1], | |
| padding=v[2]) | |
| layers.append((layer_name, layer)) | |
| else: | |
| conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1], | |
| kernel_size=v[2], stride=v[3], | |
| padding=v[4]) | |
| layers.append((layer_name, conv2d)) | |
| if layer_name not in no_relu_layers: | |
| layers.append(('relu_'+layer_name, nn.ReLU(inplace=True))) | |
| return nn.Sequential(OrderedDict(layers)) | |
| class bodypose_model(nn.Module): | |
| def __init__(self): | |
| super(bodypose_model, self).__init__() | |
| # these layers have no relu layer | |
| no_relu_layers = ['conv5_5_CPM_L1', 'conv5_5_CPM_L2', 'Mconv7_stage2_L1',\ | |
| 'Mconv7_stage2_L2', 'Mconv7_stage3_L1', 'Mconv7_stage3_L2',\ | |
| 'Mconv7_stage4_L1', 'Mconv7_stage4_L2', 'Mconv7_stage5_L1',\ | |
| 'Mconv7_stage5_L2', 'Mconv7_stage6_L1', 'Mconv7_stage6_L1'] | |
| blocks = {} | |
| block0 = OrderedDict([ | |
| ('conv1_1', [3, 64, 3, 1, 1]), | |
| ('conv1_2', [64, 64, 3, 1, 1]), | |
| ('pool1_stage1', [2, 2, 0]), | |
| ('conv2_1', [64, 128, 3, 1, 1]), | |
| ('conv2_2', [128, 128, 3, 1, 1]), | |
| ('pool2_stage1', [2, 2, 0]), | |
| ('conv3_1', [128, 256, 3, 1, 1]), | |
| ('conv3_2', [256, 256, 3, 1, 1]), | |
| ('conv3_3', [256, 256, 3, 1, 1]), | |
| ('conv3_4', [256, 256, 3, 1, 1]), | |
| ('pool3_stage1', [2, 2, 0]), | |
| ('conv4_1', [256, 512, 3, 1, 1]), | |
| ('conv4_2', [512, 512, 3, 1, 1]), | |
| ('conv4_3_CPM', [512, 256, 3, 1, 1]), | |
| ('conv4_4_CPM', [256, 128, 3, 1, 1]) | |
| ]) | |
| # Stage 1 | |
| block1_1 = OrderedDict([ | |
| ('conv5_1_CPM_L1', [128, 128, 3, 1, 1]), | |
| ('conv5_2_CPM_L1', [128, 128, 3, 1, 1]), | |
| ('conv5_3_CPM_L1', [128, 128, 3, 1, 1]), | |
| ('conv5_4_CPM_L1', [128, 512, 1, 1, 0]), | |
| ('conv5_5_CPM_L1', [512, 38, 1, 1, 0]) | |
| ]) | |
| block1_2 = OrderedDict([ | |
| ('conv5_1_CPM_L2', [128, 128, 3, 1, 1]), | |
| ('conv5_2_CPM_L2', [128, 128, 3, 1, 1]), | |
| ('conv5_3_CPM_L2', [128, 128, 3, 1, 1]), | |
| ('conv5_4_CPM_L2', [128, 512, 1, 1, 0]), | |
| ('conv5_5_CPM_L2', [512, 19, 1, 1, 0]) | |
| ]) | |
| blocks['block1_1'] = block1_1 | |
| blocks['block1_2'] = block1_2 | |
| self.model0 = make_layers(block0, no_relu_layers) | |
| # Stages 2 - 6 | |
| for i in range(2, 7): | |
| blocks['block%d_1' % i] = OrderedDict([ | |
| ('Mconv1_stage%d_L1' % i, [185, 128, 7, 1, 3]), | |
| ('Mconv2_stage%d_L1' % i, [128, 128, 7, 1, 3]), | |
| ('Mconv3_stage%d_L1' % i, [128, 128, 7, 1, 3]), | |
| ('Mconv4_stage%d_L1' % i, [128, 128, 7, 1, 3]), | |
| ('Mconv5_stage%d_L1' % i, [128, 128, 7, 1, 3]), | |
| ('Mconv6_stage%d_L1' % i, [128, 128, 1, 1, 0]), | |
| ('Mconv7_stage%d_L1' % i, [128, 38, 1, 1, 0]) | |
| ]) | |
| blocks['block%d_2' % i] = OrderedDict([ | |
| ('Mconv1_stage%d_L2' % i, [185, 128, 7, 1, 3]), | |
| ('Mconv2_stage%d_L2' % i, [128, 128, 7, 1, 3]), | |
| ('Mconv3_stage%d_L2' % i, [128, 128, 7, 1, 3]), | |
| ('Mconv4_stage%d_L2' % i, [128, 128, 7, 1, 3]), | |
| ('Mconv5_stage%d_L2' % i, [128, 128, 7, 1, 3]), | |
| ('Mconv6_stage%d_L2' % i, [128, 128, 1, 1, 0]), | |
| ('Mconv7_stage%d_L2' % i, [128, 19, 1, 1, 0]) | |
| ]) | |
| for k in blocks.keys(): | |
| blocks[k] = make_layers(blocks[k], no_relu_layers) | |
| self.model1_1 = blocks['block1_1'] | |
| self.model2_1 = blocks['block2_1'] | |
| self.model3_1 = blocks['block3_1'] | |
| self.model4_1 = blocks['block4_1'] | |
| self.model5_1 = blocks['block5_1'] | |
| self.model6_1 = blocks['block6_1'] | |
| self.model1_2 = blocks['block1_2'] | |
| self.model2_2 = blocks['block2_2'] | |
| self.model3_2 = blocks['block3_2'] | |
| self.model4_2 = blocks['block4_2'] | |
| self.model5_2 = blocks['block5_2'] | |
| self.model6_2 = blocks['block6_2'] | |
| def forward(self, x): | |
| out1 = self.model0(x) | |
| out1_1 = self.model1_1(out1) | |
| out1_2 = self.model1_2(out1) | |
| out2 = torch.cat([out1_1, out1_2, out1], 1) | |
| out2_1 = self.model2_1(out2) | |
| out2_2 = self.model2_2(out2) | |
| out3 = torch.cat([out2_1, out2_2, out1], 1) | |
| out3_1 = self.model3_1(out3) | |
| out3_2 = self.model3_2(out3) | |
| out4 = torch.cat([out3_1, out3_2, out1], 1) | |
| out4_1 = self.model4_1(out4) | |
| out4_2 = self.model4_2(out4) | |
| out5 = torch.cat([out4_1, out4_2, out1], 1) | |
| out5_1 = self.model5_1(out5) | |
| out5_2 = self.model5_2(out5) | |
| out6 = torch.cat([out5_1, out5_2, out1], 1) | |
| out6_1 = self.model6_1(out6) | |
| out6_2 = self.model6_2(out6) | |
| return out6_1, out6_2 | |
| class handpose_model(nn.Module): | |
| def __init__(self): | |
| super(handpose_model, self).__init__() | |
| # these layers have no relu layer | |
| no_relu_layers = ['conv6_2_CPM', 'Mconv7_stage2', 'Mconv7_stage3',\ | |
| 'Mconv7_stage4', 'Mconv7_stage5', 'Mconv7_stage6'] | |
| # stage 1 | |
| block1_0 = OrderedDict([ | |
| ('conv1_1', [3, 64, 3, 1, 1]), | |
| ('conv1_2', [64, 64, 3, 1, 1]), | |
| ('pool1_stage1', [2, 2, 0]), | |
| ('conv2_1', [64, 128, 3, 1, 1]), | |
| ('conv2_2', [128, 128, 3, 1, 1]), | |
| ('pool2_stage1', [2, 2, 0]), | |
| ('conv3_1', [128, 256, 3, 1, 1]), | |
| ('conv3_2', [256, 256, 3, 1, 1]), | |
| ('conv3_3', [256, 256, 3, 1, 1]), | |
| ('conv3_4', [256, 256, 3, 1, 1]), | |
| ('pool3_stage1', [2, 2, 0]), | |
| ('conv4_1', [256, 512, 3, 1, 1]), | |
| ('conv4_2', [512, 512, 3, 1, 1]), | |
| ('conv4_3', [512, 512, 3, 1, 1]), | |
| ('conv4_4', [512, 512, 3, 1, 1]), | |
| ('conv5_1', [512, 512, 3, 1, 1]), | |
| ('conv5_2', [512, 512, 3, 1, 1]), | |
| ('conv5_3_CPM', [512, 128, 3, 1, 1]) | |
| ]) | |
| block1_1 = OrderedDict([ | |
| ('conv6_1_CPM', [128, 512, 1, 1, 0]), | |
| ('conv6_2_CPM', [512, 22, 1, 1, 0]) | |
| ]) | |
| blocks = {} | |
| blocks['block1_0'] = block1_0 | |
| blocks['block1_1'] = block1_1 | |
| # stage 2-6 | |
| for i in range(2, 7): | |
| blocks['block%d' % i] = OrderedDict([ | |
| ('Mconv1_stage%d' % i, [150, 128, 7, 1, 3]), | |
| ('Mconv2_stage%d' % i, [128, 128, 7, 1, 3]), | |
| ('Mconv3_stage%d' % i, [128, 128, 7, 1, 3]), | |
| ('Mconv4_stage%d' % i, [128, 128, 7, 1, 3]), | |
| ('Mconv5_stage%d' % i, [128, 128, 7, 1, 3]), | |
| ('Mconv6_stage%d' % i, [128, 128, 1, 1, 0]), | |
| ('Mconv7_stage%d' % i, [128, 22, 1, 1, 0]) | |
| ]) | |
| for k in blocks.keys(): | |
| blocks[k] = make_layers(blocks[k], no_relu_layers) | |
| self.model1_0 = blocks['block1_0'] | |
| self.model1_1 = blocks['block1_1'] | |
| self.model2 = blocks['block2'] | |
| self.model3 = blocks['block3'] | |
| self.model4 = blocks['block4'] | |
| self.model5 = blocks['block5'] | |
| self.model6 = blocks['block6'] | |
| def forward(self, x): | |
| out1_0 = self.model1_0(x) | |
| out1_1 = self.model1_1(out1_0) | |
| concat_stage2 = torch.cat([out1_1, out1_0], 1) | |
| out_stage2 = self.model2(concat_stage2) | |
| concat_stage3 = torch.cat([out_stage2, out1_0], 1) | |
| out_stage3 = self.model3(concat_stage3) | |
| concat_stage4 = torch.cat([out_stage3, out1_0], 1) | |
| out_stage4 = self.model4(concat_stage4) | |
| concat_stage5 = torch.cat([out_stage4, out1_0], 1) | |
| out_stage5 = self.model5(concat_stage5) | |
| concat_stage6 = torch.cat([out_stage5, out1_0], 1) | |
| out_stage6 = self.model6(concat_stage6) | |
| return out_stage6 | |
| class Body(object): | |
| def __init__(self, model_path): | |
| self.model = bodypose_model() | |
| if torch.cuda.is_available(): | |
| self.model = self.model.cuda() | |
| print('cuda') | |
| model_dict = transfer(self.model, torch.load(model_path)) | |
| self.model.load_state_dict(model_dict) | |
| self.model.eval() | |
| def __call__(self, oriImg): | |
| # scale_search = [0.5, 1.0, 1.5, 2.0] | |
| scale_search = [0.5] | |
| boxsize = 368 | |
| stride = 8 | |
| padValue = 128 | |
| thre1 = 0.1 | |
| thre2 = 0.05 | |
| multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search] | |
| heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19)) | |
| paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38)) | |
| for m in range(len(multiplier)): | |
| scale = multiplier[m] | |
| imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC) | |
| imageToTest_padded, pad = padRightDownCorner(imageToTest, stride, padValue) | |
| im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5 | |
| im = np.ascontiguousarray(im) | |
| data = torch.from_numpy(im).float() | |
| if torch.cuda.is_available(): | |
| data = data.cuda() | |
| # data = data.permute([2, 0, 1]).unsqueeze(0).float() | |
| with torch.no_grad(): | |
| Mconv7_stage6_L1, Mconv7_stage6_L2 = self.model(data) | |
| Mconv7_stage6_L1 = Mconv7_stage6_L1.cpu().numpy() | |
| Mconv7_stage6_L2 = Mconv7_stage6_L2.cpu().numpy() | |
| # extract outputs, resize, and remove padding | |
| # heatmap = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[1]].data), (1, 2, 0)) # output 1 is heatmaps | |
| heatmap = np.transpose(np.squeeze(Mconv7_stage6_L2), (1, 2, 0)) # output 1 is heatmaps | |
| heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC) | |
| heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :] | |
| heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC) | |
| # paf = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[0]].data), (1, 2, 0)) # output 0 is PAFs | |
| paf = np.transpose(np.squeeze(Mconv7_stage6_L1), (1, 2, 0)) # output 0 is PAFs | |
| paf = cv2.resize(paf, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC) | |
| paf = paf[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :] | |
| paf = cv2.resize(paf, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC) | |
| heatmap_avg += heatmap_avg + heatmap / len(multiplier) | |
| paf_avg += + paf / len(multiplier) | |
| all_peaks = [] | |
| peak_counter = 0 | |
| for part in range(18): | |
| map_ori = heatmap_avg[:, :, part] | |
| one_heatmap = gaussian_filter(map_ori, sigma=3) | |
| map_left = np.zeros(one_heatmap.shape) | |
| map_left[1:, :] = one_heatmap[:-1, :] | |
| map_right = np.zeros(one_heatmap.shape) | |
| map_right[:-1, :] = one_heatmap[1:, :] | |
| map_up = np.zeros(one_heatmap.shape) | |
| map_up[:, 1:] = one_heatmap[:, :-1] | |
| map_down = np.zeros(one_heatmap.shape) | |
| map_down[:, :-1] = one_heatmap[:, 1:] | |
| peaks_binary = np.logical_and.reduce( | |
| (one_heatmap >= map_left, one_heatmap >= map_right, one_heatmap >= map_up, one_heatmap >= map_down, one_heatmap > thre1)) | |
| peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0])) # note reverse | |
| peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks] | |
| peak_id = range(peak_counter, peak_counter + len(peaks)) | |
| peaks_with_score_and_id = [peaks_with_score[i] + (peak_id[i],) for i in range(len(peak_id))] | |
| all_peaks.append(peaks_with_score_and_id) | |
| peak_counter += len(peaks) | |
| # find connection in the specified sequence, center 29 is in the position 15 | |
| limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \ | |
| [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \ | |
| [1, 16], [16, 18], [3, 17], [6, 18]] | |
| # the middle joints heatmap correpondence | |
| mapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22], \ | |
| [23, 24], [25, 26], [27, 28], [29, 30], [47, 48], [49, 50], [53, 54], [51, 52], \ | |
| [55, 56], [37, 38], [45, 46]] | |
| connection_all = [] | |
| special_k = [] | |
| mid_num = 10 | |
| for k in range(len(mapIdx)): | |
| score_mid = paf_avg[:, :, [x - 19 for x in mapIdx[k]]] | |
| candA = all_peaks[limbSeq[k][0] - 1] | |
| candB = all_peaks[limbSeq[k][1] - 1] | |
| nA = len(candA) | |
| nB = len(candB) | |
| indexA, indexB = limbSeq[k] | |
| if (nA != 0 and nB != 0): | |
| connection_candidate = [] | |
| for i in range(nA): | |
| for j in range(nB): | |
| vec = np.subtract(candB[j][:2], candA[i][:2]) | |
| norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1]) | |
| norm = max(0.001, norm) | |
| vec = np.divide(vec, norm) | |
| startend = list(zip(np.linspace(candA[i][0], candB[j][0], num=mid_num), \ | |
| np.linspace(candA[i][1], candB[j][1], num=mid_num))) | |
| vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \ | |
| for I in range(len(startend))]) | |
| vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \ | |
| for I in range(len(startend))]) | |
| score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1]) | |
| score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min( | |
| 0.5 * oriImg.shape[0] / norm - 1, 0) | |
| criterion1 = len(np.nonzero(score_midpts > thre2)[0]) > 0.8 * len(score_midpts) | |
| criterion2 = score_with_dist_prior > 0 | |
| if criterion1 and criterion2: | |
| connection_candidate.append( | |
| [i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2]]) | |
| connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True) | |
| connection = np.zeros((0, 5)) | |
| for c in range(len(connection_candidate)): | |
| i, j, s = connection_candidate[c][0:3] | |
| if (i not in connection[:, 3] and j not in connection[:, 4]): | |
| connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]]) | |
| if (len(connection) >= min(nA, nB)): | |
| break | |
| connection_all.append(connection) | |
| else: | |
| special_k.append(k) | |
| connection_all.append([]) | |
| # last number in each row is the total parts number of that person | |
| # the second last number in each row is the score of the overall configuration | |
| subset = -1 * np.ones((0, 20)) | |
| candidate = np.array([item for sublist in all_peaks for item in sublist]) | |
| for k in range(len(mapIdx)): | |
| if k not in special_k: | |
| partAs = connection_all[k][:, 0] | |
| partBs = connection_all[k][:, 1] | |
| indexA, indexB = np.array(limbSeq[k]) - 1 | |
| for i in range(len(connection_all[k])): # = 1:size(temp,1) | |
| found = 0 | |
| subset_idx = [-1, -1] | |
| for j in range(len(subset)): # 1:size(subset,1): | |
| if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]: | |
| subset_idx[found] = j | |
| found += 1 | |
| if found == 1: | |
| j = subset_idx[0] | |
| if subset[j][indexB] != partBs[i]: | |
| subset[j][indexB] = partBs[i] | |
| subset[j][-1] += 1 | |
| subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2] | |
| elif found == 2: # if found 2 and disjoint, merge them | |
| j1, j2 = subset_idx | |
| membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2] | |
| if len(np.nonzero(membership == 2)[0]) == 0: # merge | |
| subset[j1][:-2] += (subset[j2][:-2] + 1) | |
| subset[j1][-2:] += subset[j2][-2:] | |
| subset[j1][-2] += connection_all[k][i][2] | |
| subset = np.delete(subset, j2, 0) | |
| else: # as like found == 1 | |
| subset[j1][indexB] = partBs[i] | |
| subset[j1][-1] += 1 | |
| subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2] | |
| # if find no partA in the subset, create a new subset | |
| elif not found and k < 17: | |
| row = -1 * np.ones(20) | |
| row[indexA] = partAs[i] | |
| row[indexB] = partBs[i] | |
| row[-1] = 2 | |
| row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2] | |
| subset = np.vstack([subset, row]) | |
| # delete some rows of subset which has few parts occur | |
| deleteIdx = [] | |
| for i in range(len(subset)): | |
| if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4: | |
| deleteIdx.append(i) | |
| subset = np.delete(subset, deleteIdx, axis=0) | |
| # subset: n*20 array, 0-17 is the index in candidate, 18 is the total score, 19 is the total parts | |
| # candidate: x, y, score, id | |
| return candidate, subset | |
| def sample_video_frames(video_path,): | |
| cap = cv2.VideoCapture(video_path) | |
| total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| frame_indices = np.linspace(0, total_frames - 1, total_frames, dtype=int) | |
| frames = [] | |
| for idx in frame_indices: | |
| cap.set(cv2.CAP_PROP_POS_FRAMES, idx) | |
| ret, frame = cap.read() | |
| if ret: | |
| if frame.shape[1] > 1024: | |
| frame = frame[:, 1440:, :] | |
| frame = cv2.resize(frame, (720, 480)) | |
| frames.append(frame) | |
| cap.release() | |
| return frames | |
| def process_image(pose_model, image_path): | |
| if isinstance(image_path, str): | |
| np_faceid_image = np.array(Image.open(image_path).convert("RGB")) | |
| elif isinstance(image_path, numpy.ndarray): | |
| np_faceid_image = image_path | |
| else: | |
| raise TypeError("image_path should be a string or PIL.Image.Image object") | |
| image_bgr = cv2.cvtColor(np_faceid_image, cv2.COLOR_RGB2BGR) | |
| candidate, subset = pose_model(image_bgr) | |
| pose_list = [] | |
| for c in candidate: | |
| pose_list.append([c[0], c[1]]) | |
| return pose_list | |
| def process_video(video_path, pose_model): | |
| video_frames = sample_video_frames(video_path,) | |
| print(len(video_frames)) | |
| pose_list = [] | |
| for frame in video_frames: | |
| # Convert to RGB once at the beginning | |
| frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
| pose = process_image(pose_model, frame_rgb) | |
| pose_list.append(pose) | |
| # break | |
| return pose_list | |
| def calculate_l1_distance(list1, list2): | |
| """ | |
| 计算两个列表的 L1 距离 | |
| :return: L1 距离 | |
| """ | |
| # 将列表转换为 NumPy 数组 | |
| list1 = np.array(list1) | |
| list2 = np.array(list2) | |
| min_d = min(list1.shape[0], list2.shape[0]) | |
| list1 = list1[:min_d, :] | |
| list2 = list2[:min_d, :] | |
| # 计算每对点的 L1 距离 | |
| l1_distances = np.abs(list1 - list2).sum(axis=1) | |
| # 返回所有点的 L1 距离之和 | |
| return l1_distances.sum() | |
| def calculate_pose(list1, list2): | |
| distance_list = [] | |
| for kps1 in list1: | |
| min_dis = (480 + 720) * 17 + 1 | |
| for kps2 in list2: | |
| try: | |
| min_dis = min(min_dis, calculate_l1_distance(kps1, kps2)) | |
| except: | |
| continue | |
| min_dis = min_dis/(480+720)/16 | |
| if min_dis > 1: | |
| continue | |
| distance_list.append(min_dis) | |
| if len(distance_list) > 0: | |
| return sum(distance_list)/len(distance_list) | |
| else: | |
| return 0. | |
| def main(): | |
| body_estimation = Body('eval/pose/body_pose_model.pth') | |
| device = "cuda" | |
| data_path = "data/SkyActor" | |
| # data_path = "data/LivePotraits" | |
| # data_path = "data/Actor-One" | |
| # data_path = "data/FollowYourEmoji" | |
| img_path = "/maindata/data/shared/public/rui.wang/act_review/driving_video" | |
| pre_tag = True | |
| mp4_list = os.listdir(data_path) | |
| print(mp4_list) | |
| img_list = [] | |
| video_list = [] | |
| for mp4 in mp4_list: | |
| if "mp4" not in mp4: | |
| continue | |
| if pre_tag: | |
| png_path = mp4.split('.')[0].split('-')[1] + ".mp4" | |
| else: | |
| if "-" in mp4: | |
| png_path = mp4.split('.')[0].split('-')[0] + ".mp4" | |
| else: | |
| png_path = mp4.split('.')[0].split('_')[0] + ".mp4" | |
| img_list.append(os.path.join(img_path, png_path)) | |
| video_list.append(os.path.join(data_path, mp4)) | |
| print(img_list) | |
| print(video_list[0]) | |
| pd_list = [] | |
| for i in range(len(img_list)): | |
| print("number: ", str(i), " total: ", len(img_list), data_path) | |
| pose_1 = process_video(video_list[i], body_estimation) | |
| pose_2 = process_video(img_list[i], body_estimation) | |
| dis = calculate_pose(pose_1, pose_2) | |
| print(dis) | |
| if dis > 0.0001: | |
| pd_list.append(dis) | |
| print("pose", sum(pd_list)/ len(pd_list)) | |
| main() | |