Spaces:
Runtime error
Runtime error
poc
Browse files
app.py
CHANGED
@@ -13,6 +13,11 @@ This is the demo for a Open Vocabulary Image Segmentation using
|
|
13 |
[Segment Anything Model](https://github.com/facebookresearch/segment-anything) and
|
14 |
[MetaCLIP](https://github.com/facebookresearch/MetaCLIP) combo.
|
15 |
"""
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
SAM_GENERATOR = pipeline(
|
@@ -78,32 +83,44 @@ def filter_detections(
|
|
78 |
return detections[filtering_mask]
|
79 |
|
80 |
|
81 |
-
def inference(image_rgb_pil: Image.Image, prompt: str) -> Image.Image:
|
82 |
width, height = image_rgb_pil.size
|
83 |
area = width * height
|
84 |
|
85 |
detections = run_sam(image_rgb_pil)
|
86 |
-
detections = detections[detections.area / area > 0.
|
87 |
detections = filter_detections(
|
88 |
image_rgb_pil=image_rgb_pil,
|
89 |
detections=detections,
|
90 |
prompt=prompt)
|
91 |
|
92 |
-
return
|
|
|
|
|
|
|
93 |
|
94 |
|
95 |
with gr.Blocks() as demo:
|
96 |
gr.Markdown(MARKDOWN)
|
97 |
with gr.Row():
|
98 |
with gr.Column():
|
99 |
-
input_image = gr.Image(image_mode='RGB', type='pil')
|
100 |
prompt_text = gr.Textbox(label="Prompt", value="dog")
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
submit_button.click(
|
105 |
inference,
|
106 |
inputs=[input_image, prompt_text],
|
107 |
-
outputs=
|
108 |
|
109 |
-
demo.launch(debug=False)
|
|
|
13 |
[Segment Anything Model](https://github.com/facebookresearch/segment-anything) and
|
14 |
[MetaCLIP](https://github.com/facebookresearch/MetaCLIP) combo.
|
15 |
"""
|
16 |
+
EXAMPLES = [
|
17 |
+
["https://media.roboflow.com/notebooks/examples/dog.jpeg", "dog"],
|
18 |
+
["https://media.roboflow.com/notebooks/examples/dog.jpeg", "building"],
|
19 |
+
["https://media.roboflow.com/notebooks/examples/dog-3.jpeg", "jacket"],
|
20 |
+
]
|
21 |
|
22 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
23 |
SAM_GENERATOR = pipeline(
|
|
|
83 |
return detections[filtering_mask]
|
84 |
|
85 |
|
86 |
+
def inference(image_rgb_pil: Image.Image, prompt: str) -> List[Image.Image]:
|
87 |
width, height = image_rgb_pil.size
|
88 |
area = width * height
|
89 |
|
90 |
detections = run_sam(image_rgb_pil)
|
91 |
+
detections = detections[detections.area / area > 0.01]
|
92 |
detections = filter_detections(
|
93 |
image_rgb_pil=image_rgb_pil,
|
94 |
detections=detections,
|
95 |
prompt=prompt)
|
96 |
|
97 |
+
return [
|
98 |
+
annotate(image_rgb_pil=image_rgb_pil, detections=detections),
|
99 |
+
annotate(image_rgb_pil=Image.new("RGB", (width, height), "black"), detections=detections)
|
100 |
+
]
|
101 |
|
102 |
|
103 |
with gr.Blocks() as demo:
|
104 |
gr.Markdown(MARKDOWN)
|
105 |
with gr.Row():
|
106 |
with gr.Column():
|
107 |
+
input_image = gr.Image(image_mode='RGB', type='pil', height=500)
|
108 |
prompt_text = gr.Textbox(label="Prompt", value="dog")
|
109 |
+
submit_button = gr.Button("Submit")
|
110 |
+
gallery = gr.Gallery(label="Result", object_fit="scale-down", preview=True)
|
111 |
+
with gr.Row():
|
112 |
+
gr.Examples(
|
113 |
+
examples=EXAMPLES,
|
114 |
+
fn=inference,
|
115 |
+
inputs=[input_image, prompt_text],
|
116 |
+
outputs=[gallery],
|
117 |
+
cache_examples=True,
|
118 |
+
run_on_click=True
|
119 |
+
)
|
120 |
|
121 |
submit_button.click(
|
122 |
inference,
|
123 |
inputs=[input_image, prompt_text],
|
124 |
+
outputs=gallery)
|
125 |
|
126 |
+
demo.launch(debug=False, show_error=True)
|