SkalskiP commited on
Commit
6886779
1 Parent(s): f2305ca

Update README.md and app.py for enhanced UI experience

Browse files
Files changed (4) hide show
  1. README.md +3 -3
  2. app.py +22 -3
  3. car.png +0 -0
  4. dog.jpeg +0 -0
README.md CHANGED
@@ -1,8 +1,8 @@
1
  ---
2
  title: MetaCLIP
3
- emoji: 🐠
4
- colorFrom: blue
5
- colorTo: purple
6
  sdk: gradio
7
  sdk_version: 3.50.2
8
  app_file: app.py
 
1
  ---
2
  title: MetaCLIP
3
+ emoji: 👁️
4
+ colorFrom: red
5
+ colorTo: orange
6
  sdk: gradio
7
  sdk_version: 3.50.2
8
  app_file: app.py
app.py CHANGED
@@ -5,6 +5,16 @@ import numpy as np
5
  from transformers import CLIPProcessor, CLIPModel
6
 
7
  IMAGENET_CLASSES_FILE = "imagenet-classes.txt"
 
 
 
 
 
 
 
 
 
 
8
 
9
 
10
  def load_text_lines(file_path: str) -> List[str]:
@@ -31,12 +41,21 @@ def classify_image(input_image) -> str:
31
 
32
 
33
  with gr.Blocks() as demo:
34
- gr.Markdown("""# Zero-Shot Image Classification with MetaCLIP""")
35
  with gr.Row():
36
  image = gr.Image(image_mode='RGB', type='pil')
37
- output_text = gr.Textbox()
38
- submit_button = gr.Button("Submit")
39
 
40
  submit_button.click(classify_image, inputs=[image], outputs=output_text)
41
 
 
 
 
 
 
 
 
 
 
42
  demo.queue(max_size=64).launch(debug=False)
 
5
  from transformers import CLIPProcessor, CLIPModel
6
 
7
  IMAGENET_CLASSES_FILE = "imagenet-classes.txt"
8
+ EXAMPLES = ["dog.jpeg", "car.png"]
9
+
10
+ MARKDOWN = """
11
+ # Zero-Shot Image Classification with MetaCLIP
12
+
13
+ This is the demo for a zero-shot image classification model based on
14
+ [MetaCLIP](https://github.com/facebookresearch/MetaCLIP), described in the paper
15
+ [Demystifying CLIP Data](https://arxiv.org/abs/2309.16671) that formalizes CLIP data
16
+ curation as a simple algorithm.
17
+ """
18
 
19
 
20
  def load_text_lines(file_path: str) -> List[str]:
 
41
 
42
 
43
  with gr.Blocks() as demo:
44
+ gr.Markdown(MARKDOWN)
45
  with gr.Row():
46
  image = gr.Image(image_mode='RGB', type='pil')
47
+ output_text = gr.Textbox(label="Output")
48
+ submit_button = gr.Button("Submit")
49
 
50
  submit_button.click(classify_image, inputs=[image], outputs=output_text)
51
 
52
+ gr.Examples(
53
+ examples=EXAMPLES,
54
+ fn=classify_image,
55
+ inputs=[image],
56
+ outputs=[output_text],
57
+ cache_examples=True,
58
+ run_on_click=True
59
+ )
60
+
61
  demo.queue(max_size=64).launch(debug=False)
car.png ADDED
dog.jpeg ADDED