SkalskiP commited on
Commit
8f570a9
·
1 Parent(s): 867296e

cap image size, ensure result dimension is divisible by 8

Browse files
Files changed (1) hide show
  1. app.py +28 -2
app.py CHANGED
@@ -1,3 +1,5 @@
 
 
1
  import torch
2
  import spaces
3
  import gradio as gr
@@ -17,6 +19,29 @@ pipe = FluxInpaintPipeline.from_pretrained(
17
  "black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
18
 
19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  @spaces.GPU()
21
  def process(input_image_editor, input_text, progress=gr.Progress(track_tqdm=True)):
22
  if not input_text:
@@ -34,7 +59,7 @@ def process(input_image_editor, input_text, progress=gr.Progress(track_tqdm=True
34
  gr.Info("Please draw a mask on the image.")
35
  return None
36
 
37
- width, height = image.size
38
 
39
  return pipe(
40
  prompt=input_text,
@@ -42,7 +67,8 @@ def process(input_image_editor, input_text, progress=gr.Progress(track_tqdm=True
42
  mask_image=mask_image,
43
  width=width,
44
  height=height,
45
- strength=0.7
 
46
  ).images[0]
47
 
48
 
 
1
+ from typing import Tuple
2
+
3
  import torch
4
  import spaces
5
  import gradio as gr
 
19
  "black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
20
 
21
 
22
+ def resize_image_dimensions(
23
+ original_resolution_wh: Tuple[int, int],
24
+ maximum_dimension: int = 2048
25
+ ) -> Tuple[int, int]:
26
+ width, height = original_resolution_wh
27
+
28
+ if width > height:
29
+ scaling_factor = maximum_dimension / width
30
+ else:
31
+ scaling_factor = maximum_dimension / height
32
+
33
+ new_width = int(width * scaling_factor)
34
+ new_height = int(height * scaling_factor)
35
+
36
+ new_width = new_width - (new_width % 8)
37
+ new_height = new_height - (new_height % 8)
38
+
39
+ new_width = min(maximum_dimension, new_width)
40
+ new_height = min(maximum_dimension, new_height)
41
+
42
+ return new_width, new_height
43
+
44
+
45
  @spaces.GPU()
46
  def process(input_image_editor, input_text, progress=gr.Progress(track_tqdm=True)):
47
  if not input_text:
 
59
  gr.Info("Please draw a mask on the image.")
60
  return None
61
 
62
+ width, height = resize_image_dimensions(original_resolution_wh=image.size)
63
 
64
  return pipe(
65
  prompt=input_text,
 
67
  mask_image=mask_image,
68
  width=width,
69
  height=height,
70
+ strength=0.7,
71
+ num_inference_steps=2
72
  ).images[0]
73
 
74