Spaces:
Runtime error
Runtime error
SAM box inference is working
Browse files- .gitignore +2 -1
- app.py +107 -11
- requirements.txt +2 -2
.gitignore
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
venv/
|
|
|
|
1 |
+
venv/
|
2 |
+
.idea/
|
app.py
CHANGED
@@ -1,29 +1,125 @@
|
|
1 |
-
import
|
2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
MARKDOWN = """
|
5 |
# EfficientSAM sv. SAM
|
6 |
"""
|
7 |
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
return image
|
13 |
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
with gr.Blocks() as demo:
|
16 |
gr.Markdown(MARKDOWN)
|
17 |
-
with gr.
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
submit_button.click(
|
24 |
-
|
25 |
-
inputs=[input_image],
|
26 |
-
outputs=
|
27 |
)
|
28 |
|
29 |
demo.launch(debug=False, show_error=True)
|
|
|
1 |
+
import time
|
2 |
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
import supervision as sv
|
5 |
+
from PIL import Image
|
6 |
+
import torch
|
7 |
+
from transformers import SamModel, SamProcessor
|
8 |
+
from typing import Tuple
|
9 |
+
|
10 |
|
11 |
MARKDOWN = """
|
12 |
# EfficientSAM sv. SAM
|
13 |
"""
|
14 |
|
15 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
+
SAM_MODEL = SamModel.from_pretrained("facebook/sam-vit-huge").to(DEVICE)
|
17 |
+
SAM_PROCESSOR = SamProcessor.from_pretrained("facebook/sam-vit-huge")
|
18 |
+
MASK_ANNOTATOR = sv.MaskAnnotator(
|
19 |
+
color=sv.Color.red(),
|
20 |
+
color_lookup=sv.ColorLookup.INDEX)
|
21 |
+
|
22 |
|
23 |
+
def annotate_image(image: np.ndarray, detections: sv.Detections) -> np.ndarray:
|
24 |
+
bgr_image = image[:, :, ::-1]
|
25 |
+
annotated_bgr_image = MASK_ANNOTATOR.annotate(
|
26 |
+
scene=bgr_image, detections=detections)
|
27 |
+
return annotated_bgr_image[:, :, ::-1]
|
28 |
|
29 |
+
|
30 |
+
def efficient_sam_inference(
|
31 |
+
image: np.ndarray,
|
32 |
+
x_min: int,
|
33 |
+
y_min: int,
|
34 |
+
x_max: int,
|
35 |
+
y_max: int
|
36 |
+
) -> np.ndarray:
|
37 |
+
time.sleep(0.2)
|
38 |
return image
|
39 |
|
40 |
|
41 |
+
def sam_inference(
|
42 |
+
image: np.ndarray,
|
43 |
+
x_min: int,
|
44 |
+
y_min: int,
|
45 |
+
x_max: int,
|
46 |
+
y_max: int
|
47 |
+
) -> np.ndarray:
|
48 |
+
input_boxes = [[[x_min, y_min, x_max, y_max]]]
|
49 |
+
inputs = SAM_PROCESSOR(
|
50 |
+
Image.fromarray(image),
|
51 |
+
input_boxes=[input_boxes],
|
52 |
+
return_tensors="pt"
|
53 |
+
).to(DEVICE)
|
54 |
+
|
55 |
+
with torch.no_grad():
|
56 |
+
outputs = SAM_MODEL(**inputs)
|
57 |
+
|
58 |
+
mask = SAM_PROCESSOR.image_processor.post_process_masks(
|
59 |
+
outputs.pred_masks.cpu(),
|
60 |
+
inputs["original_sizes"].cpu(),
|
61 |
+
inputs["reshaped_input_sizes"].cpu()
|
62 |
+
)[0][0][0].numpy()
|
63 |
+
mask = mask[np.newaxis, ...]
|
64 |
+
detections = sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask)
|
65 |
+
return annotate_image(image=image, detections=detections)
|
66 |
+
|
67 |
+
|
68 |
+
def inference(
|
69 |
+
image: np.ndarray,
|
70 |
+
x_min: int,
|
71 |
+
y_min: int,
|
72 |
+
x_max: int,
|
73 |
+
y_max: int
|
74 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
75 |
+
return (
|
76 |
+
efficient_sam_inference(image, x_min, y_min, x_max, y_max),
|
77 |
+
sam_inference(image, x_min, y_min, x_max, y_max)
|
78 |
+
)
|
79 |
+
|
80 |
+
|
81 |
with gr.Blocks() as demo:
|
82 |
gr.Markdown(MARKDOWN)
|
83 |
+
with gr.Tab(label="Box prompt"):
|
84 |
+
with gr.Row():
|
85 |
+
with gr.Column():
|
86 |
+
input_image = gr.Image()
|
87 |
+
with gr.Accordion(label="Box", open=False):
|
88 |
+
with gr.Row():
|
89 |
+
x_min_number = gr.Number(label="x_min")
|
90 |
+
y_min_number = gr.Number(label="y_min")
|
91 |
+
x_max_number = gr.Number(label="x_max")
|
92 |
+
y_max_number = gr.Number(label="y_max")
|
93 |
+
efficient_sam_output_image = gr.Image()
|
94 |
+
sam_output_image = gr.Image()
|
95 |
+
with gr.Row():
|
96 |
+
submit_button = gr.Button("Submit")
|
97 |
+
|
98 |
+
gr.Examples(
|
99 |
+
fn=inference,
|
100 |
+
examples=[
|
101 |
+
[
|
102 |
+
'https://media.roboflow.com/notebooks/examples/dog.jpeg',
|
103 |
+
69,
|
104 |
+
247,
|
105 |
+
624,
|
106 |
+
930
|
107 |
+
]
|
108 |
+
],
|
109 |
+
inputs=[input_image, x_min_number, y_min_number, x_max_number, y_max_number],
|
110 |
+
outputs=[efficient_sam_output_image, sam_output_image],
|
111 |
+
)
|
112 |
+
|
113 |
+
submit_button.click(
|
114 |
+
efficient_sam_inference,
|
115 |
+
inputs=[input_image, x_min_number, y_min_number, x_max_number, y_max_number],
|
116 |
+
outputs=efficient_sam_output_image
|
117 |
+
)
|
118 |
|
119 |
submit_button.click(
|
120 |
+
sam_inference,
|
121 |
+
inputs=[input_image, x_min_number, y_min_number, x_max_number, y_max_number],
|
122 |
+
outputs=sam_output_image
|
123 |
)
|
124 |
|
125 |
demo.launch(debug=False, show_error=True)
|
requirements.txt
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
torch
|
3 |
torchvision
|
4 |
|
|
|
5 |
gradio
|
6 |
transformers
|
7 |
-
supervision
|
8 |
-
gradio-imageslider
|
|
|
2 |
torch
|
3 |
torchvision
|
4 |
|
5 |
+
pillow
|
6 |
gradio
|
7 |
transformers
|
8 |
+
supervision
|
|