Spaces:
Build error
Build error
# DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism | |
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2105.02446) | |
[![GitHub Stars](https://img.shields.io/github/stars/MoonInTheRiver/DiffSinger?style=social)](https://github.com/MoonInTheRiver/DiffSinger) | |
[![downloads](https://img.shields.io/github/downloads/MoonInTheRiver/DiffSinger/total.svg)](https://github.com/MoonInTheRiver/DiffSinger/releases) | |
| [Interactive🤗 SVS](https://huggingface.co/spaces/Silentlin/DiffSinger) | |
Substantial update: We 1) **abandon** the explicit prediction of the F0 curve; 2) increase the receptive field of the denoiser; 3) make the linguistic encoder more robust. | |
**By doing so, 1) the synthesized recordings are more natural in terms of pitch; 2) the pipeline is simpler.** | |
简而言之,把F0曲线的动态性交给生成式模型去捕捉,而不再是以前那样用MSE约束对数域F0。 | |
## DiffSinger (MIDI SVS | B version) | |
### 0. Data Acquirement | |
For Opencpop dataset: Please strictly follow the instructions of [Opencpop](https://wenet.org.cn/opencpop/). We have no right to give you the access to Opencpop. | |
The pipeline below is designed for Opencpop dataset: | |
### 1. Preparation | |
#### Data Preparation | |
a) Download and extract Opencpop, then create a link to the dataset folder: `ln -s /xxx/opencpop data/raw/` | |
b) Run the following scripts to pack the dataset for training/inference. | |
```sh | |
export PYTHONPATH=. | |
CUDA_VISIBLE_DEVICES=0 python data_gen/tts/bin/binarize.py --config usr/configs/midi/cascade/opencs/aux_rel.yaml | |
# `data/binary/opencpop-midi-dp` will be generated. | |
``` | |
#### Vocoder Preparation | |
We provide the pre-trained model of [HifiGAN-Singing](https://github.com/MoonInTheRiver/DiffSinger/releases/download/pretrain-model/0109_hifigan_bigpopcs_hop128.zip) which is specially designed for SVS with NSF mechanism. | |
Also, please unzip pre-trained vocoder and [this pendant for vocoder](https://github.com/MoonInTheRiver/DiffSinger/releases/download/pretrain-model/0102_xiaoma_pe.zip) into `checkpoints` before training your acoustic model. | |
(Update: You can also move [a ckpt with more training steps](https://github.com/MoonInTheRiver/DiffSinger/releases/download/pretrain-model/model_ckpt_steps_1512000.ckpt) into this vocoder directory) | |
This singing vocoder is trained on ~70 hours singing data, which can be viewed as a universal vocoder. | |
#### Exp Name Preparation | |
```bash | |
export MY_DS_EXP_NAME=0228_opencpop_ds100_rel | |
``` | |
``` | |
. | |
|--data | |
|--raw | |
|--opencpop | |
|--segments | |
|--transcriptions.txt | |
|--wavs | |
|--checkpoints | |
|--MY_DS_EXP_NAME (optional) | |
|--0109_hifigan_bigpopcs_hop128 (vocoder) | |
|--model_ckpt_steps_1512000.ckpt | |
|--config.yaml | |
``` | |
### 2. Training Example | |
```sh | |
CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config usr/configs/midi/e2e/opencpop/ds100_adj_rel.yaml --exp_name $MY_DS_EXP_NAME --reset | |
``` | |
### 3. Inference from packed test set | |
```sh | |
CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config usr/configs/midi/e2e/opencpop/ds100_adj_rel.yaml --exp_name $MY_DS_EXP_NAME --reset --infer | |
``` | |
We also provide: | |
- the pre-trained model of DiffSinger; | |
They can be found in [here](https://github.com/MoonInTheRiver/DiffSinger/releases/download/pretrain-model/0228_opencpop_ds100_rel.zip). | |
Remember to put the pre-trained models in `checkpoints` directory. | |
### 4. Inference from raw inputs | |
```sh | |
python inference/svs/ds_e2e.py --config usr/configs/midi/e2e/opencpop/ds100_adj_rel.yaml --exp_name $MY_DS_EXP_NAME | |
``` | |
Raw inputs: | |
``` | |
inp = { | |
'text': '小酒窝长睫毛AP是你最美的记号', | |
'notes': 'C#4/Db4 | F#4/Gb4 | G#4/Ab4 | A#4/Bb4 F#4/Gb4 | F#4/Gb4 C#4/Db4 | C#4/Db4 | rest | C#4/Db4 | A#4/Bb4 | G#4/Ab4 | A#4/Bb4 | G#4/Ab4 | F4 | C#4/Db4', | |
'notes_duration': '0.407140 | 0.376190 | 0.242180 | 0.509550 0.183420 | 0.315400 0.235020 | 0.361660 | 0.223070 | 0.377270 | 0.340550 | 0.299620 | 0.344510 | 0.283770 | 0.323390 | 0.360340', | |
'input_type': 'word' | |
} # user input: Chinese characters | |
or, | |
inp = { | |
'text': '小酒窝长睫毛AP是你最美的记号', | |
'ph_seq': 'x iao j iu w o ch ang ang j ie ie m ao AP sh i n i z ui m ei d e j i h ao', | |
'note_seq': 'C#4/Db4 C#4/Db4 F#4/Gb4 F#4/Gb4 G#4/Ab4 G#4/Ab4 A#4/Bb4 A#4/Bb4 F#4/Gb4 F#4/Gb4 F#4/Gb4 C#4/Db4 C#4/Db4 C#4/Db4 rest C#4/Db4 C#4/Db4 A#4/Bb4 A#4/Bb4 G#4/Ab4 G#4/Ab4 A#4/Bb4 A#4/Bb4 G#4/Ab4 G#4/Ab4 F4 F4 C#4/Db4 C#4/Db4', | |
'note_dur_seq': '0.407140 0.407140 0.376190 0.376190 0.242180 0.242180 0.509550 0.509550 0.183420 0.315400 0.315400 0.235020 0.361660 0.361660 0.223070 0.377270 0.377270 0.340550 0.340550 0.299620 0.299620 0.344510 0.344510 0.283770 0.283770 0.323390 0.323390 0.360340 0.360340', | |
'is_slur_seq': '0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0', | |
'input_type': 'phoneme' | |
} # input like Opencpop dataset. | |
``` | |
### 5. Some issues. | |
a) the HifiGAN-Singing is trained on our [vocoder dataset](https://dl.acm.org/doi/abs/10.1145/3474085.3475437) and the training set of [PopCS](https://arxiv.org/abs/2105.02446). Opencpop is the out-of-domain dataset (unseen speaker). This may cause the deterioration of audio quality, and we are considering fine-tuning this vocoder on the training set of Opencpop. | |
b) in this version of codes, we used the melody frontend ([lyric + MIDI]->[ph_dur]) to predict phoneme duration. F0 curve is implicitly predicted together with mel-spectrogram. | |
c) example [generated audio](https://github.com/MoonInTheRiver/DiffSinger/blob/master/resources/demos_0221/DS/). | |
More generated audio demos can be found in [DiffSinger](https://github.com/MoonInTheRiver/DiffSinger/releases/download/pretrain-model/0228_opencpop_ds100_rel.zip). | |