Spaces:
Running
Running
import asyncio | |
import json | |
import os | |
import uuid | |
from datetime import datetime, timedelta, timezone | |
from typing import TYPE_CHECKING, Any, Dict, List, Optional | |
from urllib.parse import quote | |
from litellm._logging import verbose_logger | |
from litellm.integrations.additional_logging_utils import AdditionalLoggingUtils | |
from litellm.integrations.gcs_bucket.gcs_bucket_base import GCSBucketBase | |
from litellm.proxy._types import CommonProxyErrors | |
from litellm.types.integrations.base_health_check import IntegrationHealthCheckStatus | |
from litellm.types.integrations.gcs_bucket import * | |
from litellm.types.utils import StandardLoggingPayload | |
if TYPE_CHECKING: | |
from litellm.llms.vertex_ai.vertex_llm_base import VertexBase | |
else: | |
VertexBase = Any | |
class GCSBucketLogger(GCSBucketBase, AdditionalLoggingUtils): | |
def __init__(self, bucket_name: Optional[str] = None) -> None: | |
from litellm.proxy.proxy_server import premium_user | |
super().__init__(bucket_name=bucket_name) | |
# Init Batch logging settings | |
self.log_queue: List[GCSLogQueueItem] = [] | |
self.batch_size = int(os.getenv("GCS_BATCH_SIZE", GCS_DEFAULT_BATCH_SIZE)) | |
self.flush_interval = int( | |
os.getenv("GCS_FLUSH_INTERVAL", GCS_DEFAULT_FLUSH_INTERVAL_SECONDS) | |
) | |
asyncio.create_task(self.periodic_flush()) | |
self.flush_lock = asyncio.Lock() | |
super().__init__( | |
flush_lock=self.flush_lock, | |
batch_size=self.batch_size, | |
flush_interval=self.flush_interval, | |
) | |
AdditionalLoggingUtils.__init__(self) | |
if premium_user is not True: | |
raise ValueError( | |
f"GCS Bucket logging is a premium feature. Please upgrade to use it. {CommonProxyErrors.not_premium_user.value}" | |
) | |
#### ASYNC #### | |
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time): | |
from litellm.proxy.proxy_server import premium_user | |
if premium_user is not True: | |
raise ValueError( | |
f"GCS Bucket logging is a premium feature. Please upgrade to use it. {CommonProxyErrors.not_premium_user.value}" | |
) | |
try: | |
verbose_logger.debug( | |
"GCS Logger: async_log_success_event logging kwargs: %s, response_obj: %s", | |
kwargs, | |
response_obj, | |
) | |
logging_payload: Optional[StandardLoggingPayload] = kwargs.get( | |
"standard_logging_object", None | |
) | |
if logging_payload is None: | |
raise ValueError("standard_logging_object not found in kwargs") | |
# Add to logging queue - this will be flushed periodically | |
self.log_queue.append( | |
GCSLogQueueItem( | |
payload=logging_payload, kwargs=kwargs, response_obj=response_obj | |
) | |
) | |
except Exception as e: | |
verbose_logger.exception(f"GCS Bucket logging error: {str(e)}") | |
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time): | |
try: | |
verbose_logger.debug( | |
"GCS Logger: async_log_failure_event logging kwargs: %s, response_obj: %s", | |
kwargs, | |
response_obj, | |
) | |
logging_payload: Optional[StandardLoggingPayload] = kwargs.get( | |
"standard_logging_object", None | |
) | |
if logging_payload is None: | |
raise ValueError("standard_logging_object not found in kwargs") | |
# Add to logging queue - this will be flushed periodically | |
self.log_queue.append( | |
GCSLogQueueItem( | |
payload=logging_payload, kwargs=kwargs, response_obj=response_obj | |
) | |
) | |
except Exception as e: | |
verbose_logger.exception(f"GCS Bucket logging error: {str(e)}") | |
async def async_send_batch(self): | |
""" | |
Process queued logs in batch - sends logs to GCS Bucket | |
GCS Bucket does not have a Batch endpoint to batch upload logs | |
Instead, we | |
- collect the logs to flush every `GCS_FLUSH_INTERVAL` seconds | |
- during async_send_batch, we make 1 POST request per log to GCS Bucket | |
""" | |
if not self.log_queue: | |
return | |
for log_item in self.log_queue: | |
logging_payload = log_item["payload"] | |
kwargs = log_item["kwargs"] | |
response_obj = log_item.get("response_obj", None) or {} | |
gcs_logging_config: GCSLoggingConfig = await self.get_gcs_logging_config( | |
kwargs | |
) | |
headers = await self.construct_request_headers( | |
vertex_instance=gcs_logging_config["vertex_instance"], | |
service_account_json=gcs_logging_config["path_service_account"], | |
) | |
bucket_name = gcs_logging_config["bucket_name"] | |
object_name = self._get_object_name(kwargs, logging_payload, response_obj) | |
try: | |
await self._log_json_data_on_gcs( | |
headers=headers, | |
bucket_name=bucket_name, | |
object_name=object_name, | |
logging_payload=logging_payload, | |
) | |
except Exception as e: | |
# don't let one log item fail the entire batch | |
verbose_logger.exception( | |
f"GCS Bucket error logging payload to GCS bucket: {str(e)}" | |
) | |
pass | |
# Clear the queue after processing | |
self.log_queue.clear() | |
def _get_object_name( | |
self, kwargs: Dict, logging_payload: StandardLoggingPayload, response_obj: Any | |
) -> str: | |
""" | |
Get the object name to use for the current payload | |
""" | |
current_date = self._get_object_date_from_datetime(datetime.now(timezone.utc)) | |
if logging_payload.get("error_str", None) is not None: | |
object_name = self._generate_failure_object_name( | |
request_date_str=current_date, | |
) | |
else: | |
object_name = self._generate_success_object_name( | |
request_date_str=current_date, | |
response_id=response_obj.get("id", ""), | |
) | |
# used for testing | |
_litellm_params = kwargs.get("litellm_params", None) or {} | |
_metadata = _litellm_params.get("metadata", None) or {} | |
if "gcs_log_id" in _metadata: | |
object_name = _metadata["gcs_log_id"] | |
return object_name | |
async def get_request_response_payload( | |
self, | |
request_id: str, | |
start_time_utc: Optional[datetime], | |
end_time_utc: Optional[datetime], | |
) -> Optional[dict]: | |
""" | |
Get the request and response payload for a given `request_id` | |
Tries current day, next day, and previous day until it finds the payload | |
""" | |
if start_time_utc is None: | |
raise ValueError( | |
"start_time_utc is required for getting a payload from GCS Bucket" | |
) | |
# Try current day, next day, and previous day | |
dates_to_try = [ | |
start_time_utc, | |
start_time_utc + timedelta(days=1), | |
start_time_utc - timedelta(days=1), | |
] | |
date_str = None | |
for date in dates_to_try: | |
try: | |
date_str = self._get_object_date_from_datetime(datetime_obj=date) | |
object_name = self._generate_success_object_name( | |
request_date_str=date_str, | |
response_id=request_id, | |
) | |
encoded_object_name = quote(object_name, safe="") | |
response = await self.download_gcs_object(encoded_object_name) | |
if response is not None: | |
loaded_response = json.loads(response) | |
return loaded_response | |
except Exception as e: | |
verbose_logger.debug( | |
f"Failed to fetch payload for date {date_str}: {str(e)}" | |
) | |
continue | |
return None | |
def _generate_success_object_name( | |
self, | |
request_date_str: str, | |
response_id: str, | |
) -> str: | |
return f"{request_date_str}/{response_id}" | |
def _generate_failure_object_name( | |
self, | |
request_date_str: str, | |
) -> str: | |
return f"{request_date_str}/failure-{uuid.uuid4().hex}" | |
def _get_object_date_from_datetime(self, datetime_obj: datetime) -> str: | |
return datetime_obj.strftime("%Y-%m-%d") | |
async def async_health_check(self) -> IntegrationHealthCheckStatus: | |
raise NotImplementedError("GCS Bucket does not support health check") | |